Mechanism of affecting the axial rotor stability and performance with center offset degrees of axial skewed slots

Author(s):  
HaoGuang Zhang ◽  
Enhao Wang ◽  
WenHao Liu ◽  
Wuli Chu

A subsonic axial rotor with axial skewed slot casing treatment (ASSCT) was investigated with experimental and numerical methods to explore the effects of the center offset degree (Cod) on the rotor stability and performance. Cod is defined as the ratio of the central difference between the rotor tip section and ASSCT to the rotor tip axial chord length. The Cod values are selected as 1.16, 0.608, 0, and −0.36, respectively. When the ASSCT is located upstream, the value of the Cod is positive. The experimental and unsteady calculated results show that the stall margin improvement (SMI) and peak efficiency loss (PEL) are reduced when the slots move to the rotor upstream or downstream. The slots with 0 Cod (ASSCT1) achieve 50% SMI with 8.67% PEL. The slots with 0.608 Cod (ASSCT2) gain 48.5% SMI with 2.12% PEL. The slots with 1.16 Cod (ASSCT3) and −0.36 Cod (ASSCT4) gain −3.41%, 20.1% SMI, respectively. Considering the compromise between the SMI and PEL for the rotor, ASSCT5 was designed by changing the slot number of ASSCT2 from 180 to 90. The unsteady calculated result shows that ASSCT5 can gain 22.28% SMI and 0.485% PEL. The detailed analysis of the flow field in the compressor tip passage indicates that there are adverse effects made by the slots on the flow field near the rotor blade tip leading edge for ASSCT3. Moreover, the ability of reducing the range of low-velocity zones for ASSCT4 is much lower than that for ASSCT1 or ASSCT2, and ASSCT1 generates bigger flow losses in the rotor tip passage than ASSCT2. The positive effects and flow losses made by the slots with 0.608 Cod both become smaller with the slot number decreasing from 180 to 90.

Author(s):  
HaoGuang Zhang ◽  
Feng Tan ◽  
YanHui Wu ◽  
WuLi Chu ◽  
Wei Wang ◽  
...  

For compressor blade tip stall, one effective way of extending stable operating range is with the application of circumferential grooved casing treatment and its validity was proved by a lot of experimental and numerical investigations. The emphases of most circumferential grooved investigations are focused on the influence of groove depth and groove number on compressor stability, and there is few investigations dealt with the center offset degree of circumferential grooves casing treatment. Hence, an axial compressor rotor with casing treatment (CT) was investigated with experimental and numerical methods to explore the effect of center offset degree on compressor stability and performance. In the work reported here, The center offset degree is defined as the ratio of the central difference between rotor tip axial chord and CT to the axial chord length of rotor tip. When the center of CT is located within the upstream direction of the center of rotor tip axial chord, the value of center offset degree is positive. The experimental and numerical results show that stall margin improvement gained with CT is reduced as the value of center offset degree varies from 0 to 0.33 or −0.33, and the CT with −0.33 center offset degree achieves the lowest value of stall margin improvement at 53% and 73% design rotational speed. The detailed analysis of the flow-field in compressor tip indicates that there is not positive effect made by grooves on leading edge of rotor blade tip when the value of center offset degree is −0.33. As the mass flow of compressor reduces further, tip clearance leakage flow results in the outlet blockage due to the absence of the positive action of grooves near blade tip tail when the value of center offset degree is 0.33. Blockage does not appear in rotor tip passage owing to utilizing the function of all grooves with CT of 0 center offset degree.


Author(s):  
HaoGuang Zhang ◽  
XuDong Zhang ◽  
YanHui Wu ◽  
WuLi Chu ◽  
HaiYang Kuang

The objective of this study is to evaluate the effect of cross-blade slot casing treatment on the stability and performance of an axial flow compressor rotor. The experimental and unsteady calculated results both show that cross-blade slot casing treatment can generate about 22% stall margin improvement, and the compressor peak efficiency is reduced by about 13%. The detailed flow-field analyses indicate that the sucked and injected flow caused by the slots of cross-blade slot casing treatment can restrain the rotor tip passage blockage, which is made by the low energy tip clearance leakage vortex. When cross-blade slot casing treatment is applied, not only the rotor wheel flange work becomes lower in most of the rotor blade span, but also the flow loss in the blade tip passage becomes fairly large due to the strong interaction between the mainstream and the injected flows made by the slots. As a result, the compressor total pressure ratio and efficiency for cross-blade slot casing treatment are reduced obviously. Three kinds of new cross-blade slot casing treatment were designed according to the previous successful experience and investigated in this paper. The numerical results show that the new three cross-blade slot casing treatments both generate about 54% stall margin improvement at the cost of minor peak efficiency. For one new cross-blade slot casing treatment (CSCT2), the compressor peak efficiency is reduced by about 0.3%. The low energy TLV, which is present for cross-blade slot casing treatment, is removed by the strong sucked flow made by CSCT2. Moreover, the interaction between the mainstream and the injected flows caused by CSCT2 becomes weak obviously, and the corresponding flow loss is reduced greatly. Hence, the compressor stability and performance with CSCT2 are higher than those with cross-blade slot casing treatment.


Author(s):  
C. S. Kang ◽  
A. B. McKenzie ◽  
R. L. Elder

An experimental investigation to examine the influence of the vaned recess casing treatment on stall margin, operating efficiency and the flow field of a low speed axial flow fan with aerospace type blade loading is presented. Different geometrical designs of the vaned passages were examined. The best configuration resulted in a stall margin improvement of 67%, a significantly higher pressure rise in the stall region and insignificant change in peak efficiency. Detailed 3-D flow measurements in the endwall region and in the casing recess were carried out with a slanted hot-wire, providing some insight to the operation of the device. The results revealed that the stall margin improvement was largely due to the removal of flow from the blade tip to the recess, and the elimination of the growth of the stall region at the tip, which occurs at stall in the solid casing build.


Author(s):  
Hao G Zhang ◽  
Fei Y Dong ◽  
Wei Wang ◽  
Wu L Chu ◽  
Song Yan

This investigation aims to understand the mechanisms of affecting the axial flow compressor performance and internal flow field with the application of self-recirculation casing treatment. Besides, the potentiality of further enhancing the compressor performance and stability by optimizing the geometric structure of self-recirculation casing treatment is discussed in detail. The results show that self-recirculation casing treatment generates about 7.06, 7.89% stall margin improvements in the experiment and full-annulus unsteady calculation, respectively. Moreover, the compressor total pressure and isentropic efficiency are improved among most of operating points, and the experimental and calculated compressor peak efficiencies are increased by 0.7% and 0.6%, respectively. The comparisons between baseline shroud and self-recirculation casing treatment show that the flow conditions of the compressor rotor inlet upstream are improved well with self-recirculation casing treatment, and the degree of the pressure enhancement in the blade top passage for self-recirculation casing treatment is higher than that for baseline. Further, self-recirculation casing treatment can restrain the leading edge-spilled flows made by the blade tip clearance leakage flows and weaken the blade tip passage blockage. Hence, the flow loss near the rotor top passage is reduced after the application of self-recirculation casing treatment. The rotor performance and stability for self-recirculation casing treatment are greater than those for baseline. The flow-field analyses also indicate that the adverse effects caused by the clearance leakage flows of the blades tip rear are greater than those made by the clearance leakage flows of the blades leading edge. When one injecting part of self-recirculation casing treatment is aligned with the inlet of one blade tip passage, the flow-field quality in the passage is not the best among all the passages between two adjacent injecting parts of self-recirculation casing treatment. Further, the flow-field analyses also indicate that the effect of the relative position between the blade and self-recirculation casing treatment on the flows in the self-recirculation casing treatment may be ignored during the optimization of the recirculating loop configuration.


Author(s):  
Haoguang Zhang ◽  
Wenhao Liu ◽  
Enhao Wang ◽  
Yanhui Wu ◽  
Weidong Yao

This paper seeks to reveal the mechanisms of enhancing the stability of a subsonic axial flow rotor by applying blade angle slots casing treatment (BSCT). When blade angle slots are applied, there is about 9% stall margin improvement for the experiment and about 8% stall margin improvement for the calculation, but the decrease in the rotor maximum efficiency is about 11% for the experiment and the calculation. The compared results between smooth wall and blade angle slots indicate that the backflow in the rotor top passage is weakened by the injected and sucked flows formed inside the slots of BSCT. Moreover, the injected flows inside the slots interfere with the flows in the rotor passage upstream, and this interference leads to large flow losses. Therefore, the rotor efficiency for blade angle slots is much lower than that for smooth wall. To confirm that the structural optimization of blade angle slots can effectively improve the compressor stability with small efficiency losses, optimized blade angle slots casing treatment (BSCT1) was designed according to the past experience of slot casing treatment. The calculated result shows that the optimized blade angle slots generate about 59% stall margin improvement, and the compressor maximum efficiency with the optimized blade angle slots is about 0.05% more than that for smooth wall. The flow field analyses show that the strong sucked flows formed inside the slots for BSCT1 can prevent the backflow, which exists in the rotor top passage for BSCT, from appearing. In addition, the level of interference of the flows in the rotor passage upstream for BSCT1 is much lower than that for BSCT, and the corresponding losses with BSCT1 become lower. Therefore, the rotor with BSCT1 has a larger stable operating range and better efficiencies than that with BSCT.


Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Marco Porro ◽  
Richard Jefferson-Loveday ◽  
Ernesto Benini

This work focuses its attention on possibilities to enhance the stability of an axial compressor using a casing treatment technique. Circumferential grooves machined into the case are considered and their performances evaluated using three-dimensional steady state computational simulations. The effects of rectangular and new T-shape grooves on NASA Rotor 37 performances are investigated, resolving in detail the flow field near the blade tip in order to understand the stall inception delay mechanism produced by the casing treatment. First, a validation of the computational model was carried out analysing a smooth wall case without grooves. The comparisons of the total pressure ratio, total temperature ratio and adiabatic efficiency profiles with experimental data highlighted the accuracy and validity of the model. Then, the results for a rectangular groove chosen as the baseline case demonstrated that the groove interacts with the tip leakage flow, weakening the vortex breakdown and reducing the separation at the blade suction side. These effects delay stall inception, improving compressor stability. New T-shape grooves were designed keeping the volume as a constant parameter and their performances were evaluated in terms of stall margin improvement and efficiency variation. All the configurations showed a common efficiency loss near the peak condition and some of them revealed a stall margin improvement with respect to the baseline. Due to their reduced depth, these new configurations are interesting because they enable the use of a thinner light-weight compressor case as is desirable in aerospace applications.


Author(s):  
N. K. W. Lee ◽  
E. M. Greitzer

An experimental investigation was carried out to examine the effects on stall margin of flow injection into, and flow removal out of, the endwall region of an axial compressor blade row. A primary objective of the investigation was clarification of the mechanism by which casing treatment (which involves both removal and injection) suppresses stall in turbomachines. To simulate the relative motion between blade and treatment, the injection and removal took place through a slotted hub rotating beneath a cantilevered stator row. Overall performance data and detailed (time-averaged) flowfield measurements were obtained. Flow injection and removal both increased the stalling pressure rise, but neither was as effective as the wall treatment. Removal of high blockage flow is thus not the sole reason for the observed stall margin improvement in casing or hub treatment, as injection can also contribute significantly to stall suppression. The results also indicate that the increase in stall pressure rise with injection is linked to the streamwise momentum of the injected flow, and it is suggested that this should be the focus of further studies.


Author(s):  
M. Ziabasharhagh ◽  
A. B. McKenzie ◽  
R. L. Elder

An experimental investigation has been carried out on the influence of a vaned recessed casing treatment on the stall margin improvement of axial flow fans with different hub to tip ratio, with and without inlet distortion. The inlet distortion tests were conducted on a 0.5 hub to tip ratio fan and significant increases in the flow range with only small drops in operating efficiency were observed. The clean flow tests were conducted on higher hub to tip ratio fans (0.7 and 0.9). In each case the stage characteristic was compared with the results obtained with a solid casing. Significant increases in the flow range, with only modest or no loss in operating efficiency, were observed for optimum configurations at both diameter ratios.


Author(s):  
Yan Ma ◽  
Guang Xi ◽  
Guangkuan Wu

The present paper describes an investigation of stall margin enhancement and a detailed analysis of the impeller flow field due to self-recirculation casing treatment (SRCT) configuration of a high-speed small-size centrifugal impeller. The influence of different SRCT configurations on the impeller flow field at near-stall condition has been analyzed, highlighting the improvement in stall flow ability. This paper also discusses the influence of the SRCT configurations on the inlet flow angle, inlet swirl velocity and loss distribution in the impeller passage to understand the mechanism of the SRCT configurations in enhancing the stall margin of the impeller. The variation of the bleed flow rate at different operating conditions is also presented in this paper. Finally, the time-averaged unsteady simulation results at near-stall point are presented and compared with steady-state solutions.


Author(s):  
Tim Houghton ◽  
Ivor Day

This paper concerns the optimisation of casing grooves and the important influence of stall inception mechanism on groove performance. Installing casing grooves is a well known technique for improving the stable operating range of a compressor, but the wide-spread use of grooves is restricted by the loss of efficiency and flow capacity. In this paper, laboratory tests are used to examine the conditions under which casing treatment can be used to greatest effect. The use of a single casing groove was investigated in a recently published companion paper. The current work extends this to multiple-groove treatments and considers their performance in relation to stall inception mechanisms. Here it is shown that the stall margin gain from multiple grooves is less than the sum of the gains if the grooves were used individually. By contrast, the loss of efficiency is additive as the number of grooves increases. It is then shown that casing grooves give the greatest stall margin improvement when used in a compressor which exhibits spike-type stall inception, while modal activity before stall can dramatically reduce the effectiveness of the grooves. This finding highlights the importance of being able to predict the stall inception mechanism which might occur in a given compressor before and after grooves are added. Some published prediction techniques are therefore examined, but found wanting. Lastly, it is shown that casing grooves can, in some cases, be used to remove rotor blades and produce a more efficient, stable and light-weight rotor.


Sign in / Sign up

Export Citation Format

Share Document