scholarly journals Transonic flutter characteristics of an airfoil with morphing devices

Author(s):  
Shun He ◽  
Shijun Guo ◽  
Wenhao Li

An investigation into transonic flutter characteristic of an airfoil conceived with the morphing leading and trailing edges has been carried out. Computational fluid dynamics (CFD) is used to calculate the unsteady aerodynamic force in transonic flow. An aerodynamic reduced order model (ROM) based on autoregressive model with exogenous input (ARX) is used in the numerical simulation. The flutter solution is determined by eigenvalue analysis at specific Mach number. The approach is validated by comparing the transonic flutter characteristics of the Isogai wing with relevant literatures before applied to a morphing airfoil. The study reveals that by employing the morphing trailing edge, the shock wave forms and shifts to the trailing edge at a lower Mach number, and aerodynamic force stabilization happens earlier. Meanwhile, the minimum flutter speed increases and transonic dip occurs at a lower Mach number. It is also noted that leading edge morphing has negligible effect on the appearance of the shock wave and transonic flutter. The mechanism of improving the transonic flutter characteristics by morphing technology is discussed by correlating shock wave location on airfoil surface, unsteady aerodynamics with flutter solution.

2015 ◽  
Vol 779 ◽  
pp. 751-775 ◽  
Author(s):  
K. B. M. Q. Zaman ◽  
A. F. Fagan ◽  
J. E. Bridges ◽  
C. A. Brown

The interaction between an 8:1 aspect ratio rectangular jet and a flat plate, placed parallel to the jet, is addressed in this study. At high subsonic conditions and for certain relative locations of the plate, a resonance takes place with accompanying audible tones. Even when the tone is not audible the sound pressure level spectra are often marked by conspicuous peaks. The frequencies of these peaks, as functions of the plate’s length, its location relative to the jet as well as jet Mach number, are studied in an effort to understand the flow mechanism. It is demonstrated that the tones are not due to a simple feedback between the nozzle exit and the plate’s trailing edge; the leading edge also comes into play in determining the frequency. With parametric variation, it is found that there is an order in the most energetic spectral peaks; their frequencies cluster in distinct bands. The lowest frequency band is explained by an acoustic feedback involving diffraction at the plate’s leading edge. Under the resonant condition, a periodic flapping motion of the jet column is seen when viewed in a direction parallel to the plate. Phase-averaged Mach number data on a cross-stream plane near the plate’s trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear ‘axis switching’ takes place for the time-averaged cross-section of the jet that does not occur otherwise for a non-resonant condition.


2019 ◽  
Vol 16 (2) ◽  
pp. 403-409
Author(s):  
M. P. Arun ◽  
M. Satheesh ◽  
Edwin Raja J. Dhas

Manufacturing and maintaining different aircraft fleet leads to various purposes, which consumes more money as well as man power. Solution to this, nations that are leading in the field of aeronautics are performing much research and development works on new aircraft designs that could do the operations those were done by varied aircrafts. The foremost benefit of this delta wing is, along the huge rearward sweep angle, the wing’s leading edge would not contact the boundary of shock wave. Further, the boundary is produced at the fuselage nose due to the speed of aircraft approaches and also goes beyond the transonic to supersonic speed. Further, rearward sweep angle greatly worse the airspeed: wings under normal condition to leading edge, so permits the aircraft to fly at great transonic, subsonic, or supersonic speed, whereas the over wing speed is kept to minimal range than that of the sound speed. The cropped delta wing with fence has analysed in three cases: Fences at 3/4th distance from the centre, with fences at half distance from the centre and with fences at the centre. Further, the delta wing that cropped is exported to ANSYS FLUENT V14.0 software and analysed by making the boundary condition settings like sonic Mach number of flow over wing along with the angle of attack.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
Barry J. Brown ◽  
...  

Profile and secondary loss correlations have been developed and improved over the years to include the induced incidence and leading edge geometry and to reflect recent trends in turbine design. All of these investigations have resulted in better understanding of the flow field in turbine passages. However, there is still insufficient data on the performance of turbine airfoils with high turning angles operating at varying incidence angles at transonic Mach numbers. The paper presents detailed aerodynamic measurements for three different turbine airfoils with similar turning angles but different aerodynamic shapes. Midspan total pressure loss, secondary flow field, and static pressure measurements on the airfoil surface in the cascades are presented and compared for the three different airfoil sets. The airfoils are designed for the same velocity triangles (inlet/exit gas angles and Mach number). Airfoil curvature and true chord are varied to change the loading vs. chord. The objective is to investigate the type of loading distribution and its effect on aerodynamic performance (pressure loss). Measurements are made at +10, 0 and −10 degree incidence angles for high turning turbine airfoils with ∼127 degree turning. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. In order to attain a ratio of inlet Mach number to exit Mach number that is representative to that encountered in a real engine, the exit span is increased relative to the inlet span. This results in one end wall diverging from inlet to exit at a 13 degree angle, which simulates the required leading edge loading as seen in an engine. 3D viscous compressible CFD analysis was carried out in order to compare the results with experimentally obtained values and to further investigate the flow characteristics of the airfoils under study.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250035 ◽  
Author(s):  
T. R. MARCHANT ◽  
NOEL F. SMYTH

Many optical and other nonlinear media are governed by dispersive, or diffractive, wave equations, for which initial jump discontinuities are resolved into a dispersive shock wave. The dispersive shock wave smooths the initial discontinuity and is a modulated wavetrain consisting of solitary waves at its leading edge and linear waves at its trailing edge. For integrable equations the dispersive shock wave solution can be found using Whitham modulation theory. For nonlinear wave equations which are hyperbolic outside the dispersive shock region, the amplitudes of the solitary waves at the leading edge and the linear waves at the trailing edge of the dispersive shock can be determined. In this paper an approximate method is presented for calculating the amplitude of the lead solitary waves of a dispersive shock for general nonlinear wave equations, even if these equations are not hyperbolic in the dispersionless limit. The approximate method is validated using known dispersive shock solutions and then applied to calculate approximate dispersive shock solutions for equations governing nonlinear optical media, such as nematic liquid crystals, thermal glasses and colloids. These approximate solutions are compared with numerical results and excellent comparisons are obtained.


2017 ◽  
Vol 832 ◽  
pp. 212-240 ◽  
Author(s):  
Pradeepa T. Karnick ◽  
Kartik Venkatraman

We study the influence of shock and boundary layer interactions in transonic flutter of an aeroelastic system using a Reynolds-averaged Navier–Stokes (RANS) solver together with the Spalart–Allmaras turbulence model. We show that the transonic flutter boundary computed using a viscous flow solver can be divided into three distinct regimes: a low transonic Mach number range wherein viscosity mimics increasing airfoil thickness thereby mildly influencing the flutter boundary; an intermediate region of drastic change in the flutter boundary due to shock-induced separation; and a high transonic Mach number zone of no viscous effects when the shock moves close to the trailing edge. Inviscid transonic flutter simulations are a very good approximation of the aeroelastic system in predicting flutter in the first and third regions: that is when the shock is not strong enough to cause separation, and in regions where the shock-induced separated region is confined to a small region near the trailing edge of the airfoil. However, in the second interval of intermediate transonic Mach numbers, the power distribution on the airfoil surface is significantly influenced by shock-induced flow separation on the upper and lower surfaces leading to oscillations about a new equilibrium position. Though power contribution by viscous forces are three orders of magnitude less than the power due to pressure forces, these viscous effects manipulate the flow by influencing the strength and location of the shock such that the power contribution by pressure forces change significantly. Multiple flutter points that were part of the inviscid solution in this regime are now eliminated by viscous effects. Shock motion on the airfoil, shock reversal due to separation, and separation and reattachment of flow on the airfoil upper surface, also lead to multiple aerodynamic forcing frequencies. These flow features make the flutter boundary quantitatively sensitive to the turbulence model and numerical method adopted, but qualitatively they capture the essence of the physical phenomena.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040124
Author(s):  
Chuan-Zhen Liu ◽  
Peng Bai

The nonlinear increase of the lift of the double swept waverider at high angles of attack is of vital interest. The aerodynamic performance of the double swept waverider is calculated and compared with that of single swept waveriders. Results suggest that the lift nonlinearity of the double swept waverider is stronger than that of equal-planform-area single swept one, and the nonlinearity increases as Mach number increases. Some scholars have proposed the “vortex lift” to explain the nonlinear lift increase, but it is questionable as the main lift of the waverider comes from the lower surface rather than the upper surface. This paper proposes another explanation that the nonlinear lift increase is related to the attachment of shock wave, influenced by the leading-edge sweep angle. The shock wave is more inclined to attach under the lower surface with smaller swept than that of larger swept as angle of attack increases. When the shock wave attaches, the pressure increase via angle of attack is nonlinear, leading to the nonlinearity of lift increase.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Song Xue ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
...  

The paper presents detailed measurements of midspan total pressure loss, secondary flow field, static pressure measurements on airfoil surface at midspan, near hub and near the end walls in a transonic turbine airfoil cascade. Numerous low-speed experimental studies have been carried out to investigate the performance of turbine cascades. Profile and secondary loss correlations have been developed and improved over the years to include the induced incidence and leading edge geometry and to reflect recent trends in turbine design. All of the above investigations have resulted in better understanding of flow field in turbine passages. However, there is still insufficient data on the performance of turbine blades with high turning angles operating at varying incidences angles at transonic Mach numbers. In the present study, measurements were made at +10, 0 and −10 degree incidence angles for a high turning turbine airfoil with 127 degree turning. The exit Mach numbers were varied within a range from 0.6 to 1.1. Additionally, the exit span is increased relative to the inlet span resulting in one end wall diverging from inlet to exit at 13 degree angle. This was done in order to obtain a ratio of inlet Mach number to exit Mach number which is representative to that encountered in real engine and simulates the blade and near end wall loading that is seen in an engine. 3D viscous compressible CFD analysis was carried out in order to compare the results with experimentally obtained values and to further investigate the design and off-design flow characteristics of the airfoil under study. All aerodynamic measurements were compared with CFD analysis and a reasonably good match was observed.


Author(s):  
Javier Castillo ◽  
Gema Ortega

During the optimization of the TP400D6 engine (powering the A400M military transport aircraft), the mechanical design of the Front Bearing Structure has proven to be one of the most challenging topics in the engine development programme. One of the leading technical subjects has been the design and optimization of the thermal anti-icing system of the component. When non-specific icing simulation software tools are available, the effect of the water impingement and runback water is difficult to simulate. The objective of this paper is to show one particular aspect learnt during the design and development phase of the project: the evaluation of the error obtained in the calculation of metal temperatures on an antiiced airfoil surface due to the effect of water impingement and runback water. TP400D6 engine front end arrangement consists of a single radial structure after the engine air intake performing both the structural and aerodynamic function, transmitting bearing and high propeller loads and being the compressor IGVs. The anti-icing system employs hot compressor bleed air circulating internally in the component through a series of internal channels and passages and exiting the airfoil through trailing edge holes. Due to airfoil aerodynamic constraints and material selection, it was realised in the earlier stages of the project that it was not possible to heat the whole vane profile up to the trailing edge. In consequence, the effects of the impingement water and runback of non-evaporated water from the intake and the IGV leading edge itself, play a key role on the determination of the airfoil surface temperature and potential ice accretion. Because of not having a specific icing simulation software, water impingement and runback water effects cannot be predicted with sufficient accuracy. During the engine programme’s development phase, a dedicated component antiicing rig test was conducted in order to evaluate and obtain a closer approximation of the real behaviour of the system. The scope of this paper is to go through the details of the aforementioned effect of icing water on airfoil surface temperature, focusing on the discrepancies between predicted temperatures and test rig measured temperatures. Typical thermal modelling is used, which incorporates the best possible understanding of the water particle impingement pattern onto the airfoils and flow lines distribution around the IGV profiles. Results from the rig test have been applied to the traditional thermal model in order to improve the thermal prediction simulation and understanding of the component.


Sign in / Sign up

Export Citation Format

Share Document