Analysis of rotor aerodynamic response during ramp collective pitch increase by CFD method

Author(s):  
Kai Zhang ◽  
Qijun Zhao ◽  
Xiayang Zhang ◽  
Guohua Xu

In order to study the aerodynamic response characteristics of the helicopter rotor during ramp collective pitch increase, the moving-embedded grid technique is employed for numerical simulation. The governing equations are modeled via Navier-Stokes equations, as well as one equation S-A turbulence model. In order to improve the precision of unsteady simulation of the rotor flowfield, the three-order scheme known as Roe-WENO scheme is employed for the spatial discretization of convective fluxes, and the implicit LU-SGS scheme is adopted for the temporal discretization. The flowfield and aerodynamic characteristics of the SA349/2 Gazelle helicopter rotor are computed for verification, and thereafter, the present method is used to simulate the transient aerodynamic response of the rotor under different collective pitch increment rates. The unsteady flowfield and aerodynamic characteristics of the rotor under ramp collective pitch increase are obtained and compared with the experimental data. The results show that the numerical method not only can accurately predict the unsteady aerodynamic loads of the rotor in steady state, but also is capable of effectively simulating the transient aerodynamic response of the rotor, characterized by overshoot and delay phenomenon, during ramp collective pitch increase. Finally, the opposite ramp decrease in collective pitch and the influence of pre-twist on aerodynamic response are analyzed. The result shows that the transient aerodynamic response of the rotor under ramp collective pitch increase and decrease present a certain of symmetry. The change in pre-twist of blades only affects the thrust coefficient in steady state, while have little influence on the transient maneuvering process of collective pitch.

2011 ◽  
Vol 317-319 ◽  
pp. 2157-2161
Author(s):  
Yong Chao Zhang ◽  
Qing Guang Chen ◽  
Yong Jian Zhang ◽  
Xiang Xing Jia

The full flow field model of a widely used multi-blade centrifugal fan was built, and unstructured grids were used to discrete the computational domain. The moving reference frame is adopted to transfer data between the interfaces of the rotating field and the stationary field. Pressure boundary conditions are specified to the inlet and the outlet. The SIMPLE algorithm in conjunction with the RNG k-ε turbulent model was used to solve the three-dimensional Navier-Stokes equations. The steady and unsteady numerical simulations of the inner flow in the fan at different working conditions were presented using the CFD method. The numerical simulation results were validated by contrasting to the experiment results. The results displayed the characteristics of the velocity field, pressure field, pressure fluctuation at two monitoring points in the centrifugal fan. The results can provide basis for optimizing the fan design and the internal flow, and have important value of engineering applications in the increase of the overall performance in operation.


2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.


Author(s):  
Sandeep Soni ◽  
DP Vakharia

The present paper investigates the turbulence effect on the steady-state performance of a new variety of journal bearing, i.e. the noncircular floating ring bearing. This particular bearing consists of the journal, floating ring, as well as lower and upper lobes. The shaft and the floating ring are cylindrical while surfaces of the bearing are noncircular. The classical Navier–Stokes equations and continuity equation in cylindrical coordinates are being satisfactorily adapted with the linearized turbulent lubrication model of Ng and Pan. These improved equations are being solved by the finite element method using Galerkin’s technique and an appropriate iteration strategy. The proposed bearing has a length-to-diameter ratio of 1 and operates over different values of the ratio of clearances (i.e. 0.70 and 1.30). The steady-state performance parameters computed are presented in terms of an inner and outer film eccentricity ratios, load-carrying capacity, attitude angle, speed ratio, friction coefficient variable, oil flow, and temperature rise variable for the Reynolds number up to 9000. The present analysis predicts better performance in the turbulent regime as compared to the laminar regime for the noncircular floating ring bearing.


Sign in / Sign up

Export Citation Format

Share Document