Optimization study on the influence of little blades’ spatial position on a compressor cascade performance

Author(s):  
Shan Ma ◽  
Xiaolin Sun

To reveal the importance of little blades’ spatial position to improve the cascade performance at different condition, the pitchwise and axial direction of the little blades on the end-wall are adopted as the optimization variables to complete a double-objective optimization. Meanwhile, the three-dimensional flow field characteristics of the cascade with and without little blades are analyzed comparatively. The study found that as the optimal solutions are obtained at the three bigger incidences (3°, 5°, and 7°), the optimal position is always close to the leading edge of blade and far away from the blade suction surface, and the more intuitive design suggestions are given in this article. Moreover, at the near design conditions (−1°, 0°, and 1°), little blades increase the total pressure loss and reduce the static pressure, which are considered unsuitable for improving the cascade performance. If the stable operation range are the main performance indicators, the optimization of the little blades’ spatial position should be completed at the near stall condition (7° incidence). If the conditions with mid-range incidences (2°< i <5°) are the main performance index, the parameter optimization of little blades should be achieved at 5°. Based on the further flow field analysis of the optimization results obtained at 3°, 5°, and 7° incidences (named Opt_Act3, Opt_Act5, and Opt_Act7), the induced vortices resist the effect of axial reverse pressure gradient and pass through the blade passage, which is the main reason for the total pressure loss reduction. Appropriate spatial position of little blades not only strengthens the capability to prevent the low-energy fluids accumulating in the corner region near the end-wall, but exhibits sufficient advantage to weaken the boundary layer.

Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich ◽  
Zhen-Xue Han

The objective in this aerodynamic shape design effort is to minimize total pressure loss across the two-dimensional linear airfoil cascade row while satisfying a number of constraints. They included fixed axial chord, total torque, inlet and exit flow angles, and blade cross-section area, while maintaining thickness distribution greater than a minimum specified value. The aerodynamic shape optimization can be performed by using any available flow-field analysis code. For the analysis of the performance of intermediate cascade shapes we used an unstructured grid based compressible Navier-Stokes flow-field analysis code with k-e turbulence model. A robust genetic optimization algorithm was used for optimization and a constrained sequential quadratic programming was used enforcement of certain constraints. The airfoil geometry was parameterized using conic section parameters and B-splines thus keeping the number of geometric design variables to a minimum while achieving a high degree of geometric flexibility and robustness. Significant reductions of the total pressure loss were achieved using this constrained method for a supersonic exit flow axial turbine cascade.


Author(s):  
Cong Chen ◽  
Jianyang Yu ◽  
Fu Chen

In order to explore the control mechanism of vortex generator jet, which is located in the passage (PVGJ), on the separation flow, the influence of the pitch angle, skew angle, locations and jet-to-inflow ratio are studied using numerical methods in a high subsonic compressor cascade. The changing of the flow pattern is also analyzed in detail. The results show that the control effect of the end-wall vortex generator jet located in the passage is better than the leading edge one and the aerodynamic performance is effectively improved. The maximum total pressure loss coefficient decreases by 12% and the static pressure coefficient increases by 5.2% while the jet-to-inflow ratio is only 0.3%. The control effect is sensitive to the change of jet parameters. When 0 deg < β < 80 deg, 20 deg < α < 50 deg,, x < 0.5B, y < 0.15t, the vortex generation jet could acquire an ideal control effect. As the jet mass increases, the total pressure loss coefficient gradually reduces. The VGJ prevent separation mainly by bringing high momentum fluid into the near wall region and by promoting momentum transport through turbulent mixing in previous studies. Both the LVGJ and PVGJ mainly take advantage of jet vortex to prevent the cross flow from interacting with the suction side boundary layer.


Author(s):  
Cong Chen ◽  
Huaping Liu ◽  
Fu Chen

This paper presents a numerical and experimental result of the end-wall vortex generator jets for controlling corner separation and enhancing the aerodynamic performance in a high subsonic (Ma = 0.7) compressor cascade. The experiments were carried out on a compressor cascade at design point ( i = 0°) and off-design points ( i = −2°, 2°, and 4°). At design point, the total pressure loss coefficient could be reduced up to 12.1%.With the increase in the incidence, the control effect is enhanced first and then reduced. The maximum total pressure loss reduction is up to 14.6% when the incidence is 2°. The numerical study is further conducted to analyze the flow pattern and the vortex structure. The jet vortex is formed downstream of the jet hole using the vortex generator jets, the cross flow on the end wall is also suppressed.


2019 ◽  
Author(s):  
Saeed A. El-Shahat ◽  
Hesham M. El-Batsh ◽  
Ali M. A. Attia ◽  
Guojun Li ◽  
Lei Fu

Abstract Flow separation is a major parameter affecting the compressor performance. It reduces the compressor efficiency, limits static pressure rise capability and contributes to instability in compressors. In applied research, there is a lack of understanding of the nature and mechanism of the three-dimensional (3-D) flow separation in the axial compressor especially on the juncture of the endwall and blade corner region. In the present study, the 3-D flow field in an axial compressor cascade has been studied experimentally as well as numerically. For the experimental study part, a linear compressor cascade has been installed in an open loop wind tunnel. The experimental data was acquired for a Reynolds number Rec = 2.98 × 105 based on the blade chord and the inlet flow conditions. The total pressure loss progress through the blade passage has been measured by using calibrated five and seven-hole pressure probes connected to ATX sensor module data acquisition system. The static pressure distribution on the endwall has been measured employing static pressure taps connected to digital micromanometers. To investigate the loss mechanism through the cascade, the total pressure loss coefficient has been calculated from the measured data. The computational fluid dynamics (CFD) study of the flow field was performed to gain a better understanding of the flow features. Two turbulence models, Spalart-Allmaras (S-A) and shear stress transport SST (k-ω) were used. From both parts of study, the flow field development and total pressure loss progress through the cascade have been investigated and compared. Moreover, the received data demonstrated a good agreement between the experimental and computational results. The predicted flow streamlines by numerical calculations showed regions characterized by flow separation and recirculation zones that could be used to enhance the understanding of the loss mechanism in compressor cascades. All measurements taken by 5-hole and 7-hole pressure probes have been analyzed and compared. It was found that their readings were almost the same and there are no excellences for using 7-hole probe. Furthermore S-A turbulence model calculations showed more consistencies with experimental results than SST (k-ω) model.


Author(s):  
Shan Ma ◽  
Xiaolin Sun

The development of boundary layer affects the compressor cascade performance to a certain extent. Therefore, the compound lean and little blades are selected to redistribute the boundary layer, and the influences of these two flow control technologies on the axial compressor cascade performance are further studied. The calculated results showed that appropriate high pressure region on the blade suction surface near the end-wall is helpful to reduce the total pressure loss of compressor cascade, which can be achieved by positive lean technique. Meanwhile, the maximum stable operation boundary can be expanded by the application of positive leaned blade. On the other hand, the introduction of negative lean angle not only increases the total pressure loss of cascade, but reduces the stable operation range. As the little blades are introduced in the negative lean compressor cascade, the stable operation range is significantly improved by the introduction of little blades. Especially the cascade with −10° lean angle, the maximum stable operation boundary is increased from 1° to 6°. In the positive lean compressor cascade, although more low-energy fluid is accumulated on the blade suction surface near the mid-span, the little blades still show an active role in reducing the total pressure loss and expending the stable operation range, because the influence range of induced vortex reaches 30%span. The results provide a reference for improving the aerodynamic performance of compressor stator, especially when more low-energy fluid is blocked in the range near the mid-span.


2006 ◽  
Author(s):  
V. Jyothish Kumar ◽  
V. Ganesan

Present work is concerned with the flow field analysis inside an annular combustion chamber. Geometry is modeled with all the complexities taken into account which includes swirler, atomizer, thickness of casing and liners to include real hole effects in primary and dilution holes, dome and flare part of the combustor and liner holes. There are around 790 holes in dome and 678 holes in flare part of the combustor and each of 1mm diameter. There are around 250 cooling ring holes to protect the liners. GAMBIT preprocessor is used for modeling the complex geometry. Only 20° sector is generated for analysis because of the rotational symmetry of the geometry. A parametric study has been carried out by varying the number of holes in the dome and flare part of the combustor. Diameter of the holes is varied from 1mm to 3 mm in steps of 0.2 mm. Total pressure loss is calculated across the combustor, dome and flare region for different hole diameters. A study on the effect of diameter of primary and dilution holes across the combustor is also carried out. It is found that there is no appreciable change in total pressure loss for different hole diameters of dome and flare part whereas the primary and dilution hole diameter plays an important role in determining the total pressure loss. In order to validate the code, experimental results are taken from the literature (Koutmos and McGuirk 1989) where a water model Can-Type Combustor is used for flow analysis with different mass flow rate through the swirler. The agreement between the two is reasonably satisfactory.


1990 ◽  
Author(s):  
Yan-Ping Tang ◽  
Mao-Zhang Chen

Three methods of vortex control over the end wall flow in compressor cascades have been investigated experimentally. The total pressure loss at the exit of a linear compressor cascade is reduced 6.5%, 10.5% and 26.5% respectively by these methods for different incidences over a range of moderate-high values. The physics of these methods has been discussed and some new concepts of vortex control techniques in compressor cascades have been proposed.


2014 ◽  
Vol 716-717 ◽  
pp. 711-716
Author(s):  
Jie Yu ◽  
Xiong Chen ◽  
Hong Wen Li

In order to study the swirl flow characteristics in the solid fuel ramjet chamber, a new type of annular vane swirler with NACA airfoil is designed. The cold swirl flow field in the chamber is numerically simulated with different camber and t attack angle, while the swirl number , swirl flow field structure, total pressure recovery coefficient were studied. According to numerical simulation result, the main factors in swirl number are camber and angle of attack, the greater angle of attack, the greater the camber ,the stronger swirl will be. Results show that the total pressure loss is mainly concentrated in the inlet section, the total pressure loss cause by vane swirler is small. Radial velocity gradient exists in swirling flow, and increases with the swirl number. With the influence of centrifugal force and combustion chamber structure, the radial velocity gradient increases.


Author(s):  
Kenta Mizutori ◽  
Koji Fukudome ◽  
Makoto Yamamoto ◽  
Masaya Suzuki

Abstract We performed numerical simulation to understand deposition phenomena on high-pressure turbine vane. Several deposition models were compared and the OSU model showed good adaptation to any flow field and material, so it was implemented on UPACS. After the implementation, the simulations of deposition phenomenon in several cases of the flow field were conducted. From the results, particles adhere on the leading edge and the trailing edge side of the pressure surface. Also, the calculation of the total pressure loss coefficient was conducted after computing the flow field after deposition. The total pressure loss coefficient increased after deposition and it was revealed that the deposition deteriorates aerodynamic performance.


Author(s):  
Maxime Lecoq ◽  
Nicholas Grech ◽  
Pavlos K. Zachos ◽  
Vassilios Pachidis

Aero-gas turbine engines with a mixed exhaust configuration offer significant benefits to the cycle efficiency relative to separate exhaust systems, such as increase in gross thrust and a reduction in fan pressure ratio required. A number of military and civil engines have a single mixed exhaust system designed to mix out the bypass and core streams. To reduce mixing losses, the two streams are designed to have similar total pressures. In design point whole engine performance solvers, a mixed exhaust is modelled using simple assumptions; momentum balance and a percentage total pressure loss. However at far off-design conditions such as windmilling and altitude relights, the bypass and core streams have very dissimilar total pressures and momentum, with the flow preferring to pass through the bypass duct, increasing drastically the bypass ratio. Mixing of highly dissimilar coaxial streams leads to complex turbulent flow fields for which the simple assumptions and models used in current performance solvers cease to be valid. The effect on simulation results is significant since the nozzle pressure affects critical aspects such as the fan operating point, and therefore the windmilling shaft speeds and air mass flow rates. This paper presents a numerical study on the performance of a lobed mixer under windmilling conditions. An analysis of the flow field is carried out at various total mixer pressure ratios, identifying the onset and nature of recirculation, the flow field characteristics, and the total pressure loss along the mixer as a function of the operating conditions. The data generated from the numerical simulations is used together with a probabilistic approach to generate a response surface in terms of the mass averaged percentage total pressure loss across the mixer, as a function of the engine operating point. This study offers an improved understanding on the complex flows that arise from mixing of highly dissimilar coaxial flows within an aero-gas turbine mixer environment. The total pressure response surface generated using this approach can be used as look-up data for the engine performance solver to include the effects of such turbulent mixing losses.


Sign in / Sign up

Export Citation Format

Share Document