Applications of little blades in a high-load compressor cascade with leaned blade

Author(s):  
Shan Ma ◽  
Xiaolin Sun

The development of boundary layer affects the compressor cascade performance to a certain extent. Therefore, the compound lean and little blades are selected to redistribute the boundary layer, and the influences of these two flow control technologies on the axial compressor cascade performance are further studied. The calculated results showed that appropriate high pressure region on the blade suction surface near the end-wall is helpful to reduce the total pressure loss of compressor cascade, which can be achieved by positive lean technique. Meanwhile, the maximum stable operation boundary can be expanded by the application of positive leaned blade. On the other hand, the introduction of negative lean angle not only increases the total pressure loss of cascade, but reduces the stable operation range. As the little blades are introduced in the negative lean compressor cascade, the stable operation range is significantly improved by the introduction of little blades. Especially the cascade with −10° lean angle, the maximum stable operation boundary is increased from 1° to 6°. In the positive lean compressor cascade, although more low-energy fluid is accumulated on the blade suction surface near the mid-span, the little blades still show an active role in reducing the total pressure loss and expending the stable operation range, because the influence range of induced vortex reaches 30%span. The results provide a reference for improving the aerodynamic performance of compressor stator, especially when more low-energy fluid is blocked in the range near the mid-span.

Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Karsten Liesner ◽  
Robert Meyer

The large secondary flow area in the compressor hub-corner region usually leads to three-dimensional separation in the passage with large amounts of total pressure loss. In this paper numerical simulations of a linear high-speed compressor cascade, consisting of five NACA 65-K48 stator profiles, were performed to analyze the flow mechanism of hub-corner separation for the base flow. Experimental validation is used to verify the numerical results. Active control of the hub-corner separation was investigated by using boundary layer suction. The influence of the selected locations of the endwall suction slot was investigated in an effort to quantify the gains of the compressor cascade performance. The results show that the optimal chordwise location should contain the development section of the three-dimensional corner separation downstream of the 3D corner separation onset. The best pitchwise location should be close enough to the vanes’ suction surface. Therefore the optimal endwall suction location is the MTE slot, the one from 50% to 75% chord at the hub, close to the blade suction surface. By use of the MTE slot with 1% suction flow ratio, the total-pressure loss is substantially decreased by about 15.2% in the CFD calculations and 9.7% in the measurement at the design operating condition.


Author(s):  
Shan Ma ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Chuanle Liu

The performance of a compressor cascade is considerably influenced by flow control methods. In this paper, the synergistic effects of combination between micro-vortex generators (MVG) and boundary layer suction (BLS) are discussed in a high-load compressor cascade. Seven cases, which are grouped by a kind of micro-vortex generator and boundary layer suction with three locations, are investigated to control secondary flow effects and enhance the aerodynamic performance of the compressor cascade. The MVG is mounted on the end-wall in front of the passage. The rectangle suction slot with three radial positions is installed on the blade suction surface near the trailing edge. The numerical results show that: at the design condition, the total pressure loss is effectively decreased as well as the static pressure coefficient increase when the combined MVG and SBL method (COM) is used, which is superior to MVG in an aerodynamic performance. At the stall condition, the induced vortex coming from MVG could mix the low-energy fluid and mainstream, which result in the reduced separation, and the total pressure loss decreased by 11.54% when the suction flow ratio is 1.5%. The total pressure loss decreases by 14.59% when the COM control methods are applied.


Author(s):  
J. L. Veesart ◽  
P. I. King ◽  
W. C. Elrod ◽  
A. J. Wennerstrom

Trailing edge crenulations offer one possible way of energizing the trailing edge wakes from a gas turbine engine compressor blade by creating small vortices as a result of the pressure differential between the suction surface and pressure surface. The effect of crenulated trailing edges on wake dissipation and mixed-out total pressure loss in a linear, subsonic, compressor cascade was investigated for three low aspect ratio blade configurations: one with no crenulations and two others with large and small crenulation patterns, respectively. The effect of crenulations was to improve the wake mixing and reduce the velocity deficit. larger crenulations dissipated the wake most rapidly, and both crenulation configurations offered an improvement in total pressure loss and some improvement in flow turning.


Author(s):  
R. L. Evans

The turbulent profile boundary layer on a one-foot chord compressor cascade blade has been measured with varying levels of freestream turbulence. Increased levels of freestream turbulence were found to increase the fullness of the velocity profiles, with a consequent decrease in displacement thickness and an increase in the skin friction coefficient. A small increase in freestream turbulence causes the cascade total-pressure loss to increase initially, while at the higher turbulence levels boundary layer separation was delayed, resulting in a decrease in the total-pressure loss and deviation angle.


Author(s):  
Utpal Chakraborthy ◽  
A. M. Pradeep

An experimental study in a low speed compressor cascade was carried out to investigate the effect of distributed suction (aspiration) on the cascade performance. Unlike suction used conventionally, distributed suction requires lower mass flow rates and is achieved by suction through holes of very small diameter distributed over the surface. A set of 5 NACA - 65(18)10 blades were used in the experiments that were carried out at a Reynolds number of 1.6 × 105. Detailed measurement of surface static pressure, total pressure loss in the wake of the blades and boundary layer thicknesses were taken at incidence angles in the range −10 to +6 degrees. Significant effect of suction was observed on the total pressure loss distribution at the trailing edge of the blades. The mean total pressure loss coefficient reduced in the range 14 to 36 percent for the various configurations tested. Higher performance improvement was observed at negative incidence angles. Boundary layer measurements revealed that the effect of suction was prominent in the mid-span of the blades. Reduction in boundary layer momentum thickness in the range 8 to 20 percent was observed for the various configurations. The calculated diffusion factor also showed improving trends in line with the observations of total pressure loss and boundary layer thicknesses. The mass flow ratio for the best configuration was only 0.15 percent of the primary mass flow. This experimental study demonstrates the effectiveness of distributed suction (using only a fraction of the primary mass flow) on compressor cascade performance.


Author(s):  
Matthias Boese ◽  
Leonhard Fottner

An experimental investigation of the influence of riblet surface structures on the loss behavior of a highly loaded compressor cascade V103-180 featuring a large chord length for high spatial resolution of the flow phenomena was performed. The cascade experiments were carried out at the High Speed Cascade Wind Tunnel of the University of the Armed Forces Munich in order to simulate realistic Mach and Reynolds numbers. The riblets used for the first investigation are of symmetric v-groove type with heights of 0.0762, 0.1143 and 0.1524 mm, respectively [1]. With two total pressure probes simultaneously traversed over one pitch behind the center airfoil, the local total pressure difference between the structured and the smooth blade is determined. From these measurements, the total pressure loss coefficient can be evaluated. For a better understanding of the flow phenomena, the profile pressure distribution is measured for the smooth and the structured blade. Boundary layer calculations were performed in order to optimise the riblet size for the design conditions of the compressor cascade. Resulting from the measurements an optimised riblet configuration (size and shape) has been manufactured and transferred to the cascade. Further flow measurements have been performed in order to evaluate the total pressure loss coefficient. Additional insight into the flow phenomena of the boundary layer has been achieved by laser-two-focus measurements. The experimental results indicate that the riblets mainly influence the suction side boundary layer behaviour. The ideal dimensionless groove height is obtained h+ = 9 leading to a reduction of the loss coefficient of 6–8%. Values of h+ > 20 cause an increase of the loss coefficient due to the development of a turbulent boundary layer separation.


Author(s):  
Shan Ma ◽  
Xiaolin Sun

To reveal the importance of little blades’ spatial position to improve the cascade performance at different condition, the pitchwise and axial direction of the little blades on the end-wall are adopted as the optimization variables to complete a double-objective optimization. Meanwhile, the three-dimensional flow field characteristics of the cascade with and without little blades are analyzed comparatively. The study found that as the optimal solutions are obtained at the three bigger incidences (3°, 5°, and 7°), the optimal position is always close to the leading edge of blade and far away from the blade suction surface, and the more intuitive design suggestions are given in this article. Moreover, at the near design conditions (−1°, 0°, and 1°), little blades increase the total pressure loss and reduce the static pressure, which are considered unsuitable for improving the cascade performance. If the stable operation range are the main performance indicators, the optimization of the little blades’ spatial position should be completed at the near stall condition (7° incidence). If the conditions with mid-range incidences (2°< i <5°) are the main performance index, the parameter optimization of little blades should be achieved at 5°. Based on the further flow field analysis of the optimization results obtained at 3°, 5°, and 7° incidences (named Opt_Act3, Opt_Act5, and Opt_Act7), the induced vortices resist the effect of axial reverse pressure gradient and pass through the blade passage, which is the main reason for the total pressure loss reduction. Appropriate spatial position of little blades not only strengthens the capability to prevent the low-energy fluids accumulating in the corner region near the end-wall, but exhibits sufficient advantage to weaken the boundary layer.


Author(s):  
Yun Wu ◽  
Xiao-hu Zhao ◽  
Ying-hong Li ◽  
Jun Li

Corner separation, which forms over the suction surface and endwall corner of a blade passage, causes significant total pressure loss in highly loaded compressors. Plasma flow control, based on the plasma aerodynamic actuation, is a novel active flow control technique to improve aircrafts’ aerodynamic characteristics and propulsion efficiency. This paper reports computational and experimental results on using three types of plasma aerodynamic actuation (PAA) to control the corner separation in a highly loaded, low speed, linear compressor cascade. Reynolds-Averaged Navier-Stokes simulations were performed to optimize the PAA arrangement. The PAA was generated by a microsecond or nanosecond dielectric barrier discharge in wind tunnel experiments. The total pressure loss coefficient distribution was adopted to evaluate the corner separation control effect. The control effect of pitch-wise PAA on the endwall, in terms of relative reduction of the pitch-wise averaged total pressure loss coefficient in the wake, is much better than that of stream-wise PAA on the suction surface. When both pitch-wise PAA on the endwall and stream-wise PAA on the suction surface are turned on simultaneously, the control effect is the best among all three types of PAA. The main effect of pitch-wise PAA on the endwall is to inhibit the crossflow from neighboring pressure surface to the suction surface, whilest the main effect of stream-wise PAA on the suction surface is to inhibit the boundary layer accumulation and separation. Compared to microsecond discharge PAA, nanosecond discharge PAA is more effective at higher freestream velocity. The mechanisms for nanosecond discharge and microsecond discharge PAA are different for corner separation control.


Author(s):  
Shan Ma ◽  
Wuli Chu ◽  
Xiaolin Sun ◽  
Zhengtao Guo ◽  
Song Yan

The axial location of full-span boundary layer suction is studied to explore the influences of suction slot on the cascade performance. At the design condition, the slot with 50% axial location shows a superior capability to reduce the total pressure loss. At the near stall condition, the more upstream of the suction slot is moved, the more total pressure loss is reduced, and the suction slot with a location of 0.7 axial chord length cannot effectively reduces the total pressure loss in all conditions. Moreover, a rearranged segmented suction slot according to the distribution characteristics of the flow reversal region is developed and compared with full-span boundary layer suction. The segmented suction slot shows significant advantages in delaying the stall occurrence, and the stall point is delayed from 7.9° to 10.0° compared with the baseline. According to a quantitative analysis method selected to measure the performances of flow control technologies, the wake loss is significantly reduced by the segmented suction slot. Finally, a set of micro-vortex generator is introduced in the cascade with a segmented suction slot, and the conclusion indicates that the portion near the end-wall is very effective to reduce the flow loss.


Author(s):  
Oliver Reutter ◽  
Stefan Hemmert-Pottmann ◽  
Alexander Hergt ◽  
Eberhard Nicke

The following paper deals with the development of an optimized fillet and an endwall contour for reducing the total pressure loss and for homogenizing the outflow of a highly loaded cascade with a low aspect ratio. The NACA-65 K48 cascade profile without a fillet and without endwall contouring is used as a basis. Optimizations are performed using the DLR in-house tool AutoOpti and the RANS-solver TRACE. Three operating points at an inflow Mach number of 0.67 with different inflow angles are used to secure a wide operating range of the optimized design. At first only a fillet is optimized. The optimized fillet is small at the leading edge and rather high, wide and thick towards the trailing edge. It reduces the total pressure loss and homogenizes the outflow up to a blade height of 20 %. Following this a combined optimization of the endwall and the fillet is performed. The optimized contour leads to the development of a vortex, which changes the secondary flow in such a way, that the corner separation is reduced, which in turn significantly reduces the total pressure loss up to 16 % in the design operating point. The contour in the outflow region leads to a significant homogenization of the outflow in the near wall region.


Sign in / Sign up

Export Citation Format

Share Document