Numerical analysis of the mechanical behaviour of intact and implanted lumbar functional spinal units: Effects of loading and boundary conditions

Author(s):  
Rahul Gautam Talukdar ◽  
Kiran Kumar Mukhopadhyay ◽  
Santanu Dhara ◽  
Sanjay Gupta

The objective of this study was to develop an improved finite element (FE) model of a lumbar functional spinal unit (FSU) and to subsequently analyse the deviations in load transfer owing to implantation. The effects of loading and boundary conditions on load transfer in intact and implanted FSUs and its relationship with the potential risk of vertebral fracture were investigated. The FE models of L1-L5 and L3-L4 FSUs, intact and implanted, were developed using patient-specific CT-scan dataset and segmentation of cortical and cancellous bone regions. The effect of submodelling technique, as compared to artificial boundary conditions, on the elastic behaviour of lumbar spine was examined. Applied forces and moments, corresponding to physiologic movements, were used as loading conditions. Results indicated that the loading and boundary conditions considerably affect stress-strain distributions within a FSU. This study, based on an improved FE model of a vertebra, highlights the importance of using the submodelling technique to adequately evaluate the mechanical behaviour of a FSU. In the intact FSU, strains of 200–400 µε were observed in the cancellous bone of vertebral body and pedicles. High equivalent stresses of 10–25 MPa and 1–5 MPa were generated around the pars interarticularis for cortical and cancellous regions, respectively. Implantation caused reductions of 85%–92% in the range of motion for all movements. Insertion of the intervertebral cage resulted in major deviations in load transfer across a FSU for all movements. The cancellous bone around cage experienced pronounced increase in stresses of 10–15 MPa, which indicated potential risk of failure initiation in the vertebra.

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Jacob T. Munro ◽  
Justin W. Fernandez ◽  
James S. Millar ◽  
Cameron G. Walker ◽  
Donald W. Howie ◽  
...  

Periprosthetic osteolysis in the retroacetabular region with cancellous bone loss is a recognized phenomenon in the long-term follow-up of total hip replacement. The effects on load transfer in the presence of defects are less well known. A validated, patient-specific, 3D finite element (FE) model of the pelvis was used to assess changes in load transfer associated with periprosthetic osteolysis adjacent to a cementless total hip arthroplasty (THA) component. The presence of a cancellous defect significantly increased (p < 0.05) von Mises stress in the cortical bone of the pelvis during walking and a fall onto the side. At loads consistent with single leg stance, this was still less than the predicted yield stress for cortical bone. During higher loads associated with a fall onto the side, highest stress concentrations occurred in the superior and inferior pubic rami and in the anterior column of the acetabulum with larger cancellous defects.


Author(s):  
Abir Dutta ◽  
Kaushik Mukherjee ◽  
Venkata Sundeep Seesala ◽  
Kaushik Dutta ◽  
Ranjan Rashmi Paul ◽  
...  

The extent to which load transfer in a diseased mandible with odontogenic tumour might influence the potential risk of pathological fracture has scarcely been investigated. The study sought to investigate the quantitative deviations in load transfer across healthy and cancer-affected (diseased) mandibles having odontogenic tumours. The effect of size of the tumours (small: 9 mm diameter, large: 19 mm diameter), and variation in bone mechanical (elastic) properties of the mandible on load transfer in cancer-affected mandibles during a mastication cycle have been investigated. Based on patient-specific computed tomography–scan datasets, detailed three-dimensional finite element models of healthy and diseased mandibles were developed. High stresses of 25–30 MPa and strains ∼700 µε were observed in the healthy mandible during the right molar bite. However, marginal deviations were observed in principal stress distributions in the diseased mandibles with small- and large-sized tumours, as compared to the healthy mandible. Maximum principal strains of ∼1474 µε were found in the body region adjacent to the symphysis region for small-sized tumour. Whereas for large-sized tumour, maximum strains of ∼2700 µε were observed in the right buccal regions. Reduction in Young’s modulus due to different stages of odontogenic tumours had a localised effect on the principal stress distributions, but triggered an abrupt increase in the principal tensile strains. It appears that there is a potential risk of pathological fracture for large-sized odontogenic tumour, owing to high tensile stresses and strains.


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


The folding of the components (layers or texture) of a rock system is viewed as an unstable strain-dependent process. The folds undergo successive stages of development, including initiation, amplification, propagation and decay. Fold shapes are functions of (i) initial morphology, (ii) mechanical behaviour of the rock, including stiffness contrasts and frictional properties of adjacent components, (in) overall finite strain. The folded components may or may not adopt periodic waveforms, depending on (i) the relative rates of propagation versus amplification of the folds and (n) the boundary conditions of the rock system.


2016 ◽  
Vol 49 (7) ◽  
pp. 1121-1127 ◽  
Author(s):  
D.J.W. Hulsen ◽  
J. Geurts ◽  
N.A.P. van Gestel ◽  
B. van Rietbergen ◽  
J.J. Arts

2012 ◽  
Vol 446-449 ◽  
pp. 3264-3272 ◽  
Author(s):  
Li Min Sun ◽  
Yi Zhou ◽  
Xue Lian Li

In recent years, structural health monitoring has been paid more and more attention in bridge engineering community. Previous researches showed that ambient temperature was one of principal factors affecting structural modal parameters in long-term. In this paper, an experimental study on correlation between dynamic properties of a cable-stayed bridge and its structural temperature was performed under temperature controlled laboratory environment. Using hammer impacting method, a dynamic testing was conducted based on a steel cable-stayed bridge model which had a span layout of 0.9+1.9+0.9m. During the experiment, the first six vertical bending modes under the environmental temperature of 0, 20 and 40°C were identified with the consideration of three kinds of boundary conditions at the deck’s ends as to two degrees of freedom, i.e. the longitudinal translation (UX) and the rotation about the transverse beam (RotZ). The above boundary conditions are UX & RotZ not constrained, UX constrained only and UX & RotZ constrained, attempting to simulate the different conditions of the bridge expansion joints. The efforts were paid to explain the physical mechanism of the results based on the updated FE model. This experimental study indicates a tendency that the frequency of the cable-stayed bridge model decreases with the increase of temperature. And furthermore, the relative difference of frequencies between 0 and 40 °C is affected by boundary conditions; in other words, when the deck is free to expand, the variation of model’s frequencies is smaller than that when the deck is restrained to expand, which is similar to the condition of the bridge’s expansion joints cannot work as normal. This experimental study can give some reference to the research of SHM and damage identification for cable-stayed bridges.


2006 ◽  
Vol 129 (1) ◽  
pp. 1-11 ◽  
Author(s):  
A. Perillo-Marcone ◽  
M. Taylor

Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior–posterior displacements and internal–external rotations were produced by the model with 20mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for −20mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors’ knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio–femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.


Sign in / Sign up

Export Citation Format

Share Document