A new correlation for estimating the gas turbine cost

Author(s):  
Dominique Adolfo ◽  
Carlo Carcasci ◽  
Beniamino Pacifici

The recent changes in energy scenario with rising attention to decarbonization, introduction of new technology and renewable source have led to design power plant with the lowest values of cost of energy, investment payback period, CO2 emission, especially in cogeneration and combined cycle plants. The cost of a gas turbine, an industrial key intellectual property value, represents a large portion of total plant capital cost. In fact, the correlations used to determine this cost, represent an important part in the optimization of power plant studied. In this work, a new cost correlation has been determined using gas turbine data presents into GTW handbook. The overall correlation, dependently only on gas turbine output power, used in a lot of scientific studies is here actualized, calculating new split-power and new coefficients for Heavy Duty and Aeroderivative gas turbine. Therefore, a more complete and detailed correlation is developed, introducing additional parameters, such as thermodynamic efficiency, pressure ratio, exhaust temperature and exhaust mass flow rate, whose values are available on gas turbine datasheet. The new correlation here proposed reflects better real gas turbine configurations and costs.

Author(s):  
Anoop Kumar Shukla ◽  
Onkar Singh

Gas/steam combined cycle power plants are extensively used for power generation across the world. Today’s power plant operators are persistently requesting enhancement in performance. As a result, the rigour of thermodynamic design and optimization has grown tremendously. To enhance the gas turbine thermal efficiency and specific power output, the research and development work has centered on improving firing temperature, cycle pressure ratio, adopting improved component design, cooling and combustion technologies, and advanced materials and employing integrated system (e.g. combined cycles, intercooling, recuperation, reheat, chemical recuperation). In this paper a study is conducted for combining three systems namely inlet fogging, steam injection in combustor, and film cooling of gas turbine blade for performance enhancement of gas/steam combined cycle power plant. The evaluation of the integrated effect of inlet fogging, steam injection and film cooling on the gas turbine cycle performance is undertaken here. Study involves thermodynamic modeling of gas/steam combined cycle system based on the first law of thermodynamics. The results obtained based on modeling have been presented and analyzed through graphical depiction of variations in efficiency, specific work output, cycle pressure ratio, inlet air temperature & density variation, turbine inlet temperature, specific fuel consumption etc.


1982 ◽  
Vol 104 (1) ◽  
pp. 9-22 ◽  
Author(s):  
I. G. Rice

The reheat (RH) pressure can be appreciably increased by applying steam cooling to the gas-generator (GG) turbine blading which in turn allows a higher RH firing temperature for a fixed exhaust temperature. These factors increase gas turbine output and raise combined-cycle efficiency. The GG turbine blading will approach “uncooled expansion efficiency”. Eliminating cooling air increases the gas turbine RH pressure by 10.6 percent. When steam is used (injected) as the blade coolant, additional GG work is also developed which further increases the RH pressure by another 12.0 percent to yield a total increase of approximately 22.6 percent. The 38-cycle pressure ratio 2400° F (1316° C) TIT GG studied produces a respectable 6.5 power turbine expansion ratio. The higher pressure also noticeably reduces the physical size of the RH combustor. This paper presents an analysis of the RH pressure rise when applying steam to blade cooling.


Author(s):  
R. Yadav

The increase in efficiency of combined cycle has mainly been caused by the improvements in gas turbine cycle efficiency. With the increase in firing temperature the exhaust temperature is substantially high around 873 K for moderate compressor pressure ratio, which has positive influence on steam cycle efficiency. Minimizing the irreversibility within the heat recovery steam generator HRSG and choosing proper steam cycle configuration with optimized steam parameters improve the steam cycle efficiency and thus in turn the combined cycle efficiency. In this paper, LM9001H gas turbine, a state of art technology turbine with modified compressor pressure ratio has been chosen as a topping cycle. Various bottoming cycles alternatives (sub-critical) coupled with LM9001H topping cycle with and without recuperation such as dual and triple pressure steam cycles with and without reheat have been chosen to predict the performance of combined cycle.


Author(s):  
A. T. Sanders ◽  
M. H. Tothill ◽  
G. R. Wood

The paper describes the design of a compact new 1.7MW (2300hp) single shaft industrial gas turbine and package, with high efficiency and exhaust temperature ideal for industrial congeneration applications. These advantages are obtained with a high pressure ratio single stage centrifugal compressor, single high temperature combustor and two-stage axial flow turbine using only one row of cooled blades. The novel design features are described with the associated development testing. A typical installation is also described showing the potential for very high overall thermodynamic efficiency.


Author(s):  
Feliciano Pava´n ◽  
Marco Romo ◽  
Juan Prince

The present paper is a thermodynamics analysis, i.e. both energy and exergy analyses for a natural gas based combined cycle power plant. The analysis was performed for an existing 240 MW plant, where the steam cycle reduces the irreversibilities during heat transfer from gas to water/steam. The effect of operating variables such as pressure ratio, gas turbine inlet temperature on the performance of combined cycle power plant has been investigated. The pressure ratio and maximum temperature (gas turbine inlet temperature) are identified as the dominant parameters having impact on the combined cycle plant performance. The work output of the topping cycle is found to increase with pressure ratio, while for the bottoming cycle it decreases. However, for the same gas turbine inlet temperature the overall work output of the combined cycle plant increases up to a certain pressure ratio, and thereafter not much increase is observed. The exergy losses of the individual components in the plant are evaluated based on second law of thermodynamics. The present results form a basis on which further work can be conducted to improve the performance of these units.


Author(s):  
Klas Jonshagen ◽  
Magnus Genrup ◽  
Pontus Eriksson

This paper will address the effects of mixing low-calorific fuel in to a natural gas fuelled large size combined cycle plant. Three different biofuels are tested namely; air blown gasification gas, indirect gasification gas and digestion gas. Simulations have been performed from 0–100% biofuel–natural gas mixtures. The biofuel impacts on the full cycle performance are discussed. Some more in-depth discussion about turbo-machinery components will be introduced when needed for the discussion. The compressors pressure ratio will increase in order to push the inert ballast of the low calorific fuels trough the turbine. Despite the increased expansion ratio in the gas turbine, the exhaust temperature raises slightly which derives from changed gas properties. The work is based on an in-house advanced off-design model within the software package IPSEPro. Sweden’s newest plant “O¨resundsverket”, which is a combined heat and power (CHP) plant, is used as a basis for the investigation. The plant is based on a GE Frame-9 gas turbine and has a triple-pressure reheat steam cycle.


Author(s):  
Tadashi Tsuji ◽  
Noboru Yanai ◽  
Kentaro Fujii ◽  
Hitoshi Miyamoto ◽  
Masaharu Watabe ◽  
...  

Today, the need to develop more efficient thermal power systems that emit less greenhouse effect gas has become a paramount importance. In line with this awareness, our research has leapt into such development that the combination of SOFC and Gas Turbine could generate power at extremely high efficiency. In this paper, we would like to present our concept of Inter Cooled Multistage SOFC-GT Hybrid Power System, developed to maximize fuel heat input to the system. We propose the combination of F-class GT (TIT 1350°C class) and 5 stage SOFC as the best for the hybrid power plant system and 77% (LHV base) is achieved at high pressure ratio.


Author(s):  
Pereddy Nageswara Reddy ◽  
J. S. Rao

Abstract A three stage combined power cycle with a Brayton cycle as the topping cycle, a Rankine cycle as the middling cycle and an Organic Rankine Cycle (ORC) as the bottoming cycle is proposed in the present investigation. A two-stage Gas Turbine Power Plant (GTPP) with inter-cooling, reheating and regeneration based on the Brayton cycle, a single-stage Steam Turbine Power Plant (STPP) based on the Rankine cycle, and a two-stage ORC power plant with reheating based on ORC with atmospheric air as the coolant is considered in the present study. This arrangement enables the proposed plant to utilize the waste heat to the maximum extent possible and convert it into electric power. As the plant can now operate at low sink temperatures depending on atmospheric air, the efficiency of the combined cycle power plant increases dramatically. Further, Steam Turbine Exhaust Pressure (STEP) is positive resulting in smaller size units and a lower installation cost. A simulation code is developed in MATLAB to investigate the performance of a three stage combined power cycle at different source and sink temperatures with varying pressure in heat recovery steam boiler and condenser-boiler. Performance results are plotted with Gas Turbine Inlet Temperature (GTIT) of 1200 to 1500 °C, Coolant Air Temperature (CAT) of −15 to +25 °C, and pressure ratio of GTPP as 6.25, 9.0 and 12.25 for different organic substances and NH3 as working fluids in the bottoming ORC. Simulation results show that the efficiency of the three stage combined power cycle will go up to 64 to 69% depending on the pressure ratio of GTPP, GTIT, and CAT. It is also observed that the variation in the efficiency of the three stage combined power cycle is small with respect to the type of working fluid used in the ORC. Among the organic working fluids R134a, R12, R22, and R123, R134a gives a higher combined cycle efficiency.


Author(s):  
Zygfryd Domachovski ◽  
Merek Dzida

The gas turbine efficiency drops quickly at part load as it is very dependant on turbine firing temperature. Therefore in combined cycle power plants the inlet guide vane is adjusted to maintain the high combustion chamber exhaust temperature. Simulations on influence of the inlet guide vane position control on combined cycle power plant transients have been carried out.


Sign in / Sign up

Export Citation Format

Share Document