Application of Taguchi and response surface methodology approach to a sustainable model developed for a compression-ignition engine using polanga biodiesel/diesel blends

Author(s):  
Abhishek Sharma ◽  
Yashvir Singh ◽  
Avdhesh Tyagi ◽  
Nishant Kumar Singh ◽  
Amneesh Singla

The exhaustive and irresponsible use of fossil fuels has created numerous public and environmental health issues in the past few decades. To address this issue, this work has investigated the use of polanga ( Calophyllum inophyllum) biodiesel/diesel blends in a diesel engine. This study focuses primarily on the optimization of performance and emission characteristics of a diesel engine fuelled with polanga-based biodiesel blends. The engine input factors were also investigated for desired optimal thermal performance. In this study, four input parameters, namely, engine loads, blends of polanga-based biodiesel, fuel injection pressure, and fuel injection timing were chosen for analysis. The corresponding engine output responses, namely, brake thermal efficiency, CO, NOx, and smoke emissions, are selected for their optimization by Taguchi method and response surface methodology. The results show that the best setting of above-mentioned input factors is reported at 44% engine load, 13% mixing of polanga biodiesel with diesel, 180 bar injection pressure of fuel, and 21.5 °bTDC injection timing of fuel. The comparison between results obtained by the optimization process and experimental results showed that the deviations were always found to be within the acceptable range of errors.

2015 ◽  
Vol 737 ◽  
pp. 53-59
Author(s):  
Akhilesh Kumar Choudhary ◽  
H. Chelladurai ◽  
C. Kannan

In current years, many researches have been worked to find new sources of alternative fuels. In this situation, the water hyacinth will be a new source for bioethanol. In this study, bioethanol extracted from water hyacinth is blended with diesel (5-BED, 5% bioethanol and 95% diesel v/v) and has been used to experimentally investigate the diesel engine performance and emission. The response surface methodology (RSM) technique with three engine operating variables like (i) Load, (ii) Compression ratio (CR) and (iii) Fuel Injection pressure (FIP) has been implemented to evaluate diesel engine performance using bioethanol diesel blend. The equations were obtained for Brake power (BP), Brake mean effective pressure (BMEP), Brake thermal efficiency (BTHE), and NO emission by using quadratic polynomial


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Nadir Yilmaz ◽  
Erol Ileri ◽  
Alpaslan Atmanlı ◽  
A. Deniz Karaoglan ◽  
Umut Okkan ◽  
...  

An experimental investigation was conducted to evaluate the suitability of hazelnut oil methyl ester (HOME) for engine performance and exhaust emissions responses of a turbocharged direct injection (TDI) diesel engine. HOME was tested at full load with various engine speeds by changing fuel injection timing (12, 15, and 18 deg CA) in a TDI diesel engine. Response surface methodology (RSM) and least-squares support vector machine (LSSVM) were used for modeling the relations between the engine performance and exhaust emission parameters, which are the measured responses and factors such as fuel injection timing (t) and engine speed (n) parameters as the controllable input variables. For this purpose, RSM and LSSVM models from experimental results were constructed for each response, namely, brake power, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), carbon dioxide (CO2), carbon monoxide (CO), and smoke opacity (N), which are affected by the factors t and n. The results of RSM and LSSVM were compared with the observed experimental results. These results showed that RSM and LSSVM were effective modeling methods with high accuracy for these types of cases. Also, the prediction performance of LSSVM was slightly better than that of RSM.


Author(s):  
Varun Kumar Singh ◽  
Naushad Ahmad Ansari ◽  
Abhishek Sharma ◽  
Samsher Gautam ◽  
Manish Kumar ◽  
...  

Biodiesel such as linseed oil can be derived from the feedstock of vegetables without disturbing supplies of food and the ecosystem. An experimental and comparative analysis was carried out to explore the effect of exhaust gas recirculation (EGR) and fuel injection pressure (FIP) on the emissions and efficiency of a CRDI diesel engine fuelled with linseed biodiesel/diesel blend. The engine characteristics were calculated using variable EGR (up to 14%) and adjustment of the injection pressure (up to 600 bar) under various load conditions. Multiple regression models were generated to evaluate responses such as Carbon monoxide (CO), Oxides of Nitrogen (NOx), hydrocarbon (HC), Brake power (BP), and Brake thermal efficiency (BTE) using response surface methodology (RSM). For all blends, a combination of FIP and EGR was employed and their impact was evaluated by plotting response surface contour. In RSM, the desirability approach is used to maximize the performance and minimize the emissions parameters of the engine. Linseed/diesel blend ratio 18.3%, FIP 576.76 bar, EGR 7.07%, and load 5.76 kg were estimated to be optimum for the tested engine. From this methodology, it was found that the optimal value of BTE, BP, HC, NOx, and CO is 19.55%, 1.758 kW, 16.7534 ppm, 505.56 ppm, and 0.0676% respectively.


Author(s):  
Abhishek Sharma ◽  
Avdhesh Tyagi ◽  
Yashvir Singh ◽  
Nishant K Singh ◽  
Navneet K Pandey

The rapid consumption of crude oil and resulting pollution are very severe problems in modern energy sectors. To meet these global problems, biodiesels obtained from non-edible plants can play a very crucial role. Keeping this idea in mind the present study focuses on making some efforts for the best utilization of innovative blends of Prosopis juliflora biodiesel in the operation of diesel engines. Four engine input parameters viz. fuel injection pressure (16–24 MPa), P. Juliflora biodiesel blends (0–10%), shaft loads (20–100%) and injection timing (15–31°bTDC (before top dead centre)) are selected for optimization process. The experiments were executed in accordance with response surface methodology. The results of the experiments revealed that the optimum combination for engine input parameters were at fuel injection timing 30°bTDC, fuel injection pressure 22 MPa, 4% P. juliflora biodiesel blending at 59% of engine load to achieve best performance. The individual desirability of brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and peak cylinder pressure were found to be 0.888, 0.949, 0.624 and 0.749, respectively, and the composite desirability of engine responses was found to be 0.7923 which makes the results acceptable.


Author(s):  
S. Mathavan ◽  
T. Mothilal ◽  
V. Andal ◽  
V. Velukumar

The invention of internal combustion engines is undoubtedly one of the greatest inventions of the modern era. There has been steady scientific research to look for alternative fuel which is economical, renewable and less harmful to nature and man compared to fossil fuels. The present project is one such experimental work to investigate the performance of a blend of diesel / N-pentanol in an appropriate combustion technique and to establish its suitability as a renewable fuel. The relative performance of diesel fuel and the blend of diesel / n-pentanol will also be analyzed. Diesel fuel blended with 30 percentage n-pentanol is the fuel blend that is proposed to be used in the experiment. Researchers have established that the application of Homogeneously Charged Compression Ignition (HCCI) technique could result in in-cylinder reduction of NOx and PM. Higher thermal efficiency could also be attained. The project also covers studying the emission effect of the diesel/n-pentanol fuel blend for various fuel injection timing, various fuel injection pressure, different EGR rates and different inlet air temperature.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


Sign in / Sign up

Export Citation Format

Share Document