Identification of critical moving characteristics in high speed on/off valve based on time derivative of the coil current

Author(s):  
Qiang Gao ◽  
Yuchuan Zhu ◽  
Changwen Wu ◽  
Yulei Jiang

This article focuses on accurate identification of the critical moving characteristics of the high speed on/off valve. Typically, there are two strategies for identifying the critical moving characteristics, including calculation strategy based on force balance and strategy for detecting the coil current’s certain points. However, the accuracy of the two above strategies needs to be improved. Therefore, to improve the identification accuracy of the high speed on/off valve’s critical moving characteristics, an identification strategy for detecting the time derivative of the coil current is proposed. First, a mathematical model of the high speed on/off valve (including electromagnetic sub-model and mechanical-fluid sub-model) is established. And on this basis, relationship between the coil current’s derivative and the valve’s critical moving characteristics is analyzed which reveals the changing rule of the coil current’s derivative causing by the ball valve’s moving. Finally, the changing rule of the coil current’s derivative is verified by the comparative simulations and experiments, which also indicate that, with the proposed identification strategy, the maximum identification error of the critical opening/closing time is only within 6%, and the maximum identification error of the total opening/closing time is still small (2.9%), compared to other identification strategies in the previous literatures.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergii Yaremenko ◽  
Melanie Sauerland ◽  
Lorraine Hope

AbstractThe circadian rhythm regulates arousal levels throughout the day and determines optimal periods for engaging in mental activities. Individuals differ in the time of day at which they reach their peak: Morning-type individuals are at their best in the morning and evening types perform better in the evening. Performance in recall and recognition of non-facial stimuli is generally superior at an individual’s circadian peak. In two studies (Ns = 103 and 324), we tested the effect of time-of-testing optimality on eyewitness identification performance. Morning- and evening-type participants viewed stimulus films depicting staged crimes and made identification decisions from target-present and target-absent lineups either at their optimal or non-optimal time-of-day. We expected that participants would make more accurate identification decisions and that the confidence-accuracy and decision time-accuracy relationships would be stronger at optimal compared to non-optimal time of day. In Experiment 1, identification accuracy was unexpectedly superior at non-optimal compared to optimal time of day in target-present lineups. In Experiment 2, identification accuracy did not differ between the optimal and non-optimal time of day. Contrary to our expectations, confidence-accuracy relationship was generally stronger at non-optimal compared to optimal time of day. In line with our predictions, non-optimal testing eliminated decision-time-accuracy relationship in Experiment 1.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1764
Author(s):  
Donghai Yang ◽  
Huayao Sun ◽  
Qing Chang ◽  
Yongxiang Sun ◽  
Limin He

Nano-fluid flooding is a new method capable of improving oil recovery; however, nanoparticles (NPs) significantly affect electric dehydration, which has rarely been investigated. The effect of silica (SiO2) NPs on the droplet–interface coalescence was investigated using a high-speed digital camera under an electric field. The droplet experienced a fall, coalescence, and secondary droplet formation. The results revealed that the oil–water interfacial tension and water conductivity changed because of the SiO2 NPs. The decrease of interfacial tension facilitated droplet deformation during the falling process. However, with the increase of particle concentration, the formed particle film inhibited the droplet deformation degree. Droplet and interface are connected by a liquid bridge during coalescence, and the NP concentration also resulted in the shape of this liquid bridge changing. The increase of NP concentration inhibited the horizontal contraction of the liquid bridge while promoting vertical collapse. As a result, it did not facilitate secondary droplet formation. Moreover, the droplet falling velocity decreased, while the rising velocity of the secondary droplet increased. Additionally, the inverse calculation of the force balance equation showed that the charge of the secondary droplet also increased. This is attributed to nanoparticle accumulation, which resulted in charge accumulation on the top of the droplet.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Soumya Ranjan Nanda ◽  
Sumit Agarwal ◽  
Vinayak Kulkarni ◽  
Niranjan Sahoo

Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.


Author(s):  
Sono Bhardawaj ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma

Increasing demand for railway vehicle speed has pushed the railway track designers to develop high-quality track. An important measure of track quality is the character of the transition curve track connecting different intersecting straight tracks. A good transition curve track must be able to negotiate the intermittent stresses and dynamic effects caused by changes in lateral acceleration at high speed. This paper presents the constructional methods for planning transition curves considering the dynamics of movement. These methods consider the non-compensated lateral acceleration, deviation in lateral acceleration and its higher time derivatives. This paper discusses the laying methods of circular, vertical and transition curves. Key aspects in laying a curved track e.g. widening of gauge on curves are discussed in this paper. This paper also suggests a transition curve which is effective not only from a dynamic point of view considering lateral acceleration and its higher time derivative but also consider the geometric conditions along with the required deflection angle.


2018 ◽  
Vol 34 (5) ◽  
pp. 347-354
Author(s):  
Garrett Easson ◽  
Megan Laughlin ◽  
Hanna Jensen ◽  
Kevin Haney ◽  
Marc Girardot ◽  
...  

Objectives The purpose of this study is to test venous valve performance and identify differences between native tissue and replacement devices developed with traditional tissue treatment methods using a new in vitro model with synchronized hemodynamic parameters and high-speed valve image acquisition. Methods An in vitro model mimicking the venous circulation to test valve performance was developed using hydrostatic pressure driven flow. Fresh and glutaraldehyde-treated vein segments were placed in the setup and opening/closing of the valves was captured by a high-speed camera. Hemodynamic data were obtained using synchronized hardware and virtual instrumentation. Results Geometric orifice area and opening/closing time of the valves was evaluated at the same hemodynamic conditions. A reduction in geometric orifice area of 27.2  ± 14.8% (p < 0.05) was observed following glutaraldehyde fixation. No significant difference in opening/closing time following chemical fixation was observed. Conclusions The developed in vitro model was shown to be an effective method for measuring the performance of venous valves. The observed decrease in geometric orifice area following glutaraldehyde treatment indicates a decrease in flow through the valve, demonstrating the consequences of traditional tissue treatment methods.


Information ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 361
Author(s):  
Handan Hou ◽  
Wei Shi ◽  
Jinyan Guo ◽  
Zhe Zhang ◽  
Weizheng Shen ◽  
...  

Individual identification of dairy cows based on computer vision technology shows strong performance and practicality. Accurate identification of each dairy cow is the prerequisite of artificial intelligence technology applied in smart animal husbandry. While the rump of each dairy cow also has lots of important features, so do the back and head, which are also important for individual recognition. In this paper, we propose a non-contact cow rump identification method based on convolutional neural networks. First, the rump image sequences of the cows while feeding were collected. Then, an object detection model was applied to detect the cow rump object in each frame of image. Finally, a fine-tuned convolutional neural network model was trained to identify cow rumps. An image dataset containing 195 different cows was created to validate the proposed method. The method achieved an identification accuracy of 99.76%, which showed a better performance compared to other related methods and a good potential in the actual production environment of cow husbandry, and the model is light enough to be deployed in an edge-computing device.


2000 ◽  
Author(s):  
Xu Cheng ◽  
Yogesh Jaluria

Abstract The motivation of manufacturers to pursue higher productivity and low costs in the fabrication of optical fibers requires large diameter silica-based preforms drawn into fiber at very high speed. An optimal design of the draw furnace is particularly desirable to meet the need of high-volume production in the optical fiber industry. This paper investigates optical fiber drawing at high draw speeds in a cylindrincal graphite furnace. A conjugate problem involving the glass and the purge gases is considered. The transport in the two regions is coupled through the boundary conditions at the free glass surface. The zonal method is used to model the radiative heat transfer in the glass. The neck-down profile of the preform at steady state is determined by a force balance, using an iterative numerical scheme. Thermally induced defects are also considered. To emphasize the effects of draw furnace geometry, the diameters of the preform and the fiber are kept fixed at 5 cm and 125 μm, respectively. The length and the diameter of the furnace are changed. For the purposes of comparison, a wide domain of draw speeds, ranging from 5 m/s to 20 m/s, is considered, and the form of the temperature distribution at the furnace surface is kept unchanged. The dependence of the preform/fiber characteristics, such as neckdown profile, velocity distribution and lag, temperature distribution and lag, heat transfer coefficent, defect concentration, and draw tension, on the furnace geometry is determined. Based on these numerical results, an optimal design of the draw furnace can be developed.


2008 ◽  
Author(s):  
Mohammad A. Rahman ◽  
Johana Gomez ◽  
Ted Heidrick ◽  
Brian A. Fleck ◽  
Jennifer McMillan

Experimentally accurate void fraction measurements are a challenge in an air/water, two-phase flows through an industrial nozzle assembly, as a highly non-uniform void fraction exists in the feeding conduit prior to the nozzle. In this study, average void fractions were measured by isolating a section in the feeding conduit of a horizontal nozzle assembly, termed as the quick-closing-valve (QCV) technique. A high-speed video camera was utilized to capture the asynchronization closing time, tac. The average closing time and asynchronization for the pneumatically controlled valves were 200 ms and 2 ms, respectively. Based on the equation of 100umtac (1−α)/αlc, the synchronization error between the two valves was 1.12%, 1.26%, and 1.79% for the 1%, 2% and 4% ALR cases, respectively; here um is the mixture velocity, α is the void faction, and lc is the closing length. Higher synchronization error at 4% ALR occurs due to enhanced momentum in the flow regime. Experimental results indicate that the average α over the 33.4 cm feeding conduit (6.25 mm ID) was 76% (αtheoretical = 75%) for the 2% ALR, and 85% (αtheoretical = 83%) for the 3.3% ALR. In the two-phase, two-component flow the α affects the drop size and stability of the spray produced from an industrial nozzle assembly. Learning from this study will yield insights and conceptual understanding of two-phase flow phenomena in conduit, which would affect stability, pulsation tendency, and possibly atomization performance of the nozzle downstream. Two-phase flow nozzles have wide applications in the industries, e.g. petrochemical, pharmaceutical, and others.


Sign in / Sign up

Export Citation Format

Share Document