Robust active finite-time control of gas compressor system surge in the presence of unmatched disturbance and uncertainty

Author(s):  
Jianhua Sun ◽  
Hai Gu ◽  
Jie Zhang ◽  
Hashem Imani Marrani

Active and robust control of surge instability is a special necessity for optimal and safe operation of centrifugal compressors, and for the purpose, this article presents a new hybrid scheme based on fuzzy and terminal sliding mode methods. The Greitzer model is used to design a novel controller when the disturbance instability in the flow and pressure alike the uncertainity in the compressor characteristic curve and throttle valve are embedded in it. The fuzzy approximator is used to estimate the effects of parametric uncertainty and the nonlinear terms, and the robustness of the proposed method is guaranteed using the terminal sliding mode control method. The Lyapunov criterion is utilized to verify the finite-time stability of the closed-loop system. The performance of the presented method is compared with other methods in the literature through simulations in MATLAB software. The results suggest that our designed controller outperforms the existing ones in terms of surge prevention and robustness against unmatched uncertainties and disturbances.

Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei

Abstract In this article, a new technique to design a robust controller to achieve finite-time partial stabilization for a class of nonlinear perturbed systems is proposed. Indeed the system is partially stabilized in a finite time, based on the novel concept of the nonsingular terminal sliding mode (TSM) control method. In the first step, the nonlinear dynamical system is divided into two subsystems based on their required stability properties of the system's states (where finite-time stability is only desired for the first subsystem). Then, using a partial diffeomorphism map to transform the first subsystem into the normal form, the control law is designed. Indeed, by introducing this new concept of the TSM method, robust finite-time stability of only a part of the system's state is guaranteed. Subsequently, simulation results demonstrate the effectiveness of the proposed method, and the results are compared with the existing methods.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 634
Author(s):  
Tianyu Yang ◽  
Bin Wang ◽  
Peng Chen

We focus on the finite-time control of a hydro-turbine governing system (HGS) in this paper. First, the nonlinear mathematical model of the hydro-turbine governing system is presented and is consistent with the actual project. Then, based on the finite-time stability theory and terminal sliding mode scheme, a new finite-time terminal sliding mode controller is designed for the hydro-turbine governing system and a detailed mathematical derivation is given. Only three vector controllers are required, which is less than the HGS equation dimensions and is easy to implement accordingly. Furthermore, numerical simulations for the proposed scheme and an existing sliding mode control are presented to verify the validity and advantage of improving transient performance. The approach proposed in this paper is simple and provides a reference for relevant hydropower systems.


2019 ◽  
Vol 41 (15) ◽  
pp. 4339-4350 ◽  
Author(s):  
Qingwen Ma ◽  
Jianguo Guo ◽  
Jun Zhou

In this paper, a finite-time control strategy based on back-stepping method combining with a terminal sliding mode control (TSMC) and a nonlinear disturbance observer (NDO) is proposed for the longitudinal dynamic model of hypersonic vehicle (HV). Firstly, the model of HV is transformed into two strict feedback subsystem: the mismatched subsystem of altitude and the matched subsystem of velocity. Then, the TSMC and back-stepping method is incorporated to cope with the unmatched issue in the HV altitude subsystem. In addition, a NDO based on a finite-time-convergent differentiator (FD) is proposed to estimate the lumped disturbances. The finite-time stability condition of the system is established via the Lyapunov theory. Finally, the robustness and effectiveness of the method are verified by simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shuanghe Yu ◽  
Lina Jin ◽  
Kai Zheng ◽  
Jialu Du

Finite-time control scheme for speed regulation of permanent magnet synchronous motor (PMSM) is investigated under the port-controlled Hamiltonian (PCH), terminal sliding mode (TSM), and fast TSM stabilization theories. The desired equilibrium is assigned to the PCH structure model of PMSM by maximum torque per ampere (MTPA) principle, and the desired Hamiltonian function of state error is constructed in the form of fractional power structure as TSM and fast TSM, respectively. Finite-time TSM and fast TSM controllers are designed via interconnection and damping assignment passivity-based control (IDA-PBC) methodology, respectively, and the finite-time stability of the desired equilibrium point is also achieved under the PCH framework. Simulation results validate the improved performance of the presented scheme.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5568
Author(s):  
Chunbao Wang ◽  
Dong Ye ◽  
Zhongcheng Mu ◽  
Zhaowei Sun ◽  
Shufan Wu

For the attitude stabilization of spacecraft with actuator dynamics, this paper proposed a finite-time control law. Firstly, the dynamic property of the actuator is analyzed by an example. Then, a basic control law is derived to achieve the finite-time stability using the double fast terminal sliding mode manifold. When there is no prior knowledge of time matrix of the actuator, an adaptive law is proposed to estimate the unknown information. An adaptive control law is derived to guarantee the finite-time convergence of the attitude, and a Lyapunov-based analysis is provided. Finally, simulations are carried out to demonstrate the effectiveness of the proposed control law to the attitude stabilization with the actuator dynamics. The results show that the high-precision attitude control performance can be achieved by the proposed scheme.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


Automatica ◽  
2005 ◽  
Vol 41 (11) ◽  
pp. 1957-1964 ◽  
Author(s):  
Shuanghe Yu ◽  
Xinghuo Yu ◽  
Bijan Shirinzadeh ◽  
Zhihong Man

Sign in / Sign up

Export Citation Format

Share Document