Climate and atmospheric circulation changes over the past 1000 years reconstructed from oxygen isotopes in lake-sediment carbonate from Ireland

The Holocene ◽  
2010 ◽  
Vol 20 (7) ◽  
pp. 1105-1111 ◽  
Author(s):  
Jonathan Holmes ◽  
Carol Arrowsmith ◽  
William Austin ◽  
John Boyle ◽  
Elizabeth Fisher ◽  
...  
The Holocene ◽  
1992 ◽  
Vol 2 (2) ◽  
pp. 97-106 ◽  
Author(s):  
B. B. Fitzharris ◽  
J. E. Hay ◽  
P. D. Jones

Nature ◽  
2005 ◽  
Vol 434 (7029) ◽  
pp. 63-66 ◽  
Author(s):  
Francisco W. Cruz ◽  
Stephen J. Burns ◽  
Ivo Karmann ◽  
Warren D. Sharp ◽  
Mathias Vuille ◽  
...  

2014 ◽  
Vol 10 (3) ◽  
pp. 1125-1144 ◽  
Author(s):  
B. G. Koffman ◽  
K. J. Kreutz ◽  
D. J. Breton ◽  
E. J. Kane ◽  
D. A. Winski ◽  
...  

Abstract. We present the first high-resolution (sub-annual) dust particle data set from West Antarctica, developed from the West Antarctic Ice Sheet (WAIS) Divide deep ice core (79.468° S, 112.086° W), and use it to reconstruct changes in atmospheric circulation over the past 2400 years. We find a background dust flux of ~4 mg m−2 year−1 and a mode particle size of 5–8 μm diameter. Through comparing the WAIS Divide record with other Antarctic ice core particle records, we observe that coastal and lower-elevation sites have higher dust fluxes and coarser particle size distributions (PSDs) than sites on the East Antarctic plateau, suggesting input from local dust sources at these lower-elevation sites. In order to explore the use of the WAIS Divide dust PSD as a proxy for past atmospheric circulation, we make quantitative comparisons between both mid-latitude zonal wind speed and West Antarctic meridional wind speed and the dust size record, finding significant positive interannual relationships. We find that the dust PSD is related to mid-latitude zonal wind speed via cyclonic activity in the Amundsen Sea region. Using our PSD record, and through comparison with spatially distributed climate reconstructions from the Southern Hemisphere (SH) middle and high latitudes, we infer that the SH westerlies occupied a more southerly position from circa 1050 to 1400 CE (Common Era), coinciding with the Medieval Climate Anomaly (MCA). Subsequently, at ca. 1430 CE, the wind belt shifted equatorward, where it remained until the mid-to-late twentieth century. We find covariability between reconstructions of El Niño–Southern Oscillation (ENSO) and the mid-latitude westerly winds in the eastern Pacific, suggesting that centennial-scale circulation changes in this region are strongly influenced by the tropical Pacific. Further, we observe increased coarse particle deposition over the past 50 years, consistent with observations that the SH westerlies have been shifting southward and intensifying in recent decades.


2021 ◽  
Author(s):  
Liang Guo ◽  
Laura J. Wilcox ◽  
Massimo Bollasina ◽  
Steven T. Turnock ◽  
Marianne T. Lund ◽  
...  

Abstract. Despite local emission reductions, severe haze events remain a serious issue in Beijing. Previous studies have suggested that both greenhouse gas increases and aerosol decreases are likely to increase the frequency of weather patterns conducive to haze events. However, the combined effect of atmospheric circulation changes and aerosol and precursor emission changes on Beijing haze remains unclear. We use the Shared Socioeconomic Pathways (SSPs) to explore the effects of aerosol and greenhouse gas emission changes on both haze weather and Beijing haze itself. We confirm that the occurrence of haze weather patterns is likely to increase in future under all SSPs, and show that even though aerosol reductions play a small role, greenhouse gas increases are the main driver, especially during the second half of the 21st century. However, the severity of the haze events decreases on decadal timescales by as much as 70 % by 2100. The main influence on the haze itself is the reductions in local aerosol emissions, which outweigh the effects of changes in atmospheric circulation patterns. This demonstrates that aerosol reductions are beneficial, despite their influence on the circulation.


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 983 ◽  
Author(s):  
Adrian Patrut ◽  
Stephan Woodborne ◽  
Roxana T. Patrut ◽  
Grant Hall ◽  
Laszlo Rakosy ◽  
...  

The year 2016 witnessed the fall of a symbol of the botanical world: the historic Chapman baobab of Botswana. This article presents the results of our investigation of the standing and fallen tree. The Chapman baobab had an open ring-shaped structure composed of six partially fused stems. Several wood samples collected from the stems prior and after their collapse were analysed by using radiocarbon dating. The radiocarbon date of the oldest sample was 1381 ± 22 BP, which corresponds to a calibrated age of 1345 (+10, −15) calendar years. The dating results show that the six stems of the Chapman baobab belonged to three different generations, which were 1350–1400, 800–1000 and 500–600 years old. The growth rate variation of the largest and oldest stem is presented and correlated with the climate evolution in the area over the past 1000 years. The factors that determined the sudden fall and death of the Chapman baobab are also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document