Comparisons of atmosphere–ocean simulations of greenhouse gas-induced climate change for pre-industrial and hypothetical ‘no-anthropogenic’ radiative forcing, relative to present day

The Holocene ◽  
2011 ◽  
Vol 21 (5) ◽  
pp. 793-801 ◽  
Author(s):  
J.E. Kutzbach ◽  
S.J. Vavrus ◽  
W.F. Ruddiman ◽  
G. Philippon-Berthier

We compare climate simulations for Present-Day (PD), Pre-Industrial (PI) time, and a hypothetical (inferred) state termed No-Anthropogenic (NA) based upon the low greenhouse gas (GHG) levels of the late stages of previous interglacials that are comparable in time (orbital configuration) to the present interglacial. We use a fully coupled dynamical atmosphere–ocean model, the CCSM3. We find a consistent trend toward colder climate (lower surface temperature, more snow and sea-ice cover, lower ocean temperature, and modified ocean circulation) as the net change in GHG radiative forcing trends more negative from PD to PI to NA. The climatic response of these variables becomes larger relative to the changed GHG forcing for each step toward a colder climate state (PD to PI to NA). This amplification is significantly enhanced using the dynamical atmosphere–ocean model compared with our previous results with an atmosphere–slab ocean model, a result that conforms to earlier idealized GHG forcing experiments. However, in our case this amplification is not an idealized result, but instead helps frame important questions concerning aspects of Holocene climate change. This enhanced amplification effect leads to an increase in our estimate of the climate’s response to inferred early anthropogenic CO2 increases (NA to PI) relative to the response to industrial-era CO2 increases (PI to PD). Although observations of the climate for the hypothetical NA (inferred from observations of previous interglacials) and for PI have significant uncertainties, our new results using CCSM3 are in better agreement with these observations than our previous results from an atmospheric model coupled to a static slab ocean. The results support more strongly inferences by Ruddiman concerning indirect effects of ocean solubility/sea-ice/deep ocean ventilation feedbacks that may have contributed to a further increase in late-Holocene atmospheric CO2 beyond that caused by early anthropogenic emissions alone.

2012 ◽  
Vol 25 (16) ◽  
pp. 5433-5450 ◽  
Author(s):  
Jennifer E. Kay ◽  
Marika M. Holland ◽  
Cecilia M. Bitz ◽  
Edward Blanchard-Wrigglesworth ◽  
Andrew Gettelman ◽  
...  

Abstract This study uses coupled climate model experiments to identify the influence of atmospheric physics [Community Atmosphere Model, versions 4 and 5 (CAM4; CAM5)] and ocean model complexity (slab ocean, full-depth ocean) on the equilibrium Arctic climate response to an instantaneous CO2 doubling. In slab ocean model (SOM) experiments using CAM4 and CAM5, local radiative feedbacks, not atmospheric heat flux convergence, are the dominant control on the Arctic surface response to increased greenhouse gas forcing. Equilibrium Arctic surface air temperature warming and amplification are greater in the CAM5 SOM experiment than in the equivalent CAM4 SOM experiment. Larger 2 × CO2 radiative forcing, more positive Arctic surface albedo feedbacks, and less negative Arctic shortwave cloud feedbacks all contribute to greater Arctic surface warming and sea ice loss in CAM5 as compared to CAM4. When CAM4 is coupled to an active full-depth ocean model, Arctic Ocean horizontal heat flux convergence increases in response to the instantaneous CO2 doubling. Though this increased ocean northward heat transport slightly enhances Arctic sea ice extent loss, the representation of atmospheric processes (CAM4 versus CAM5) has a larger influence on the equilibrium Arctic surface climate response than the degree of ocean coupling (slab ocean versus full-depth ocean). These findings underscore that local feedbacks can be more important than northward heat transport for explaining the equilibrium Arctic surface climate response and response differences in coupled climate models. That said, the processes explaining the equilibrium climate response differences here may be different than the processes explaining intermodel spread in transient climate projections.


2014 ◽  
Vol 27 (22) ◽  
pp. 8597-8607 ◽  
Author(s):  
Ken Caldeira ◽  
Ivana Cvijanovic

Abstract The response of sea ice to climate change affects Earth’s radiative properties in ways that contribute to yet more climate change. Here, a configuration of the Community Earth System Model, version 1.0.4 (CESM 1.0.4), with a slab ocean model and a thermodynamic–dynamic sea ice model is used to investigate the overall contribution to climate sensitivity of feedbacks associated with the sea ice loss. In simulations in which sea ice is not present and ocean temperatures are allowed to fall below freezing, the climate feedback parameter averages ~1.31 W m−2 K−1; the value obtained for control simulations with active sea ice is ~1.05 W m−2 K−1, indicating that, in this configuration of CESM1.0.4, sea ice response accounts for ~20% of climate sensitivity to an imposed change in radiative forcing. In this model, the effect of sea ice response on the longwave climate feedback parameter is nearly half as important as its effect on the shortwave climate feedback parameter. Further, it is shown that the strength of the overall sea ice feedback can be related to 1) the sensitivity of sea ice area to changes in temperature and 2) the sensitivity of sea ice radiative forcing to changes in sea ice area. An alternative method of disabling sea ice response leads to similar conclusions. It is estimated that the presence of sea ice in the preindustrial control simulation has a climate effect equivalent to ~3 W m−2 of radiative forcing.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2016 ◽  
Author(s):  
Malte Meinshausen ◽  
Elisabeth Vogel ◽  
Alexander Nauels ◽  
Katja Lorbacher ◽  
Nicolai Meinshausen ◽  
...  

Abstract. Atmospheric greenhouse gas concentrations are at unprecedented, record-high levels compared to pre-industrial reconstructions over the last 800,000 years. Those elevated greenhouse gas concentrations warm the planet and together with net cooling effects by aerosols, they are the reason of observed climate change over the past 150 years. An accurate representation of those concentrations is hence important to understand and model recent and future climate change. So far, community efforts to create composite datasets with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since 1980s. Here, we provide consolidated data sets of historical atmospheric (volume) mixing ratios of 43 greenhouse gases specifically for the purpose of climate model runs. The presented datasets are based on AGAGE and NOAA networks and a large set of literature studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved, and include seasonality over the period between year 0 to 2014. We assimilate data for CO2, methane (CH4) and nitrous oxide (N2O), 5 chlorofluorocarbons (CFCs), 3 hydrochlorofluorocarbons (HCFCs), 16 hydrofluorocarbons (HFCs), 3 halons, methyl bromide (CH3Br), 3 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen triflouride (NF3) and sulfuryl fluoride (SO2F2). We estimate 1850 annual and global mean surface mixing ratios of CO2 at 284.3 ppmv, CH4 at 808.2 ppbv and N2O at 273.0 ppbv and quantify the seasonal and hemispheric gradients of surface mixing ratios. Compared to earlier intercomparisons, the stronger implied radiative forcing in the northern hemisphere winter (due to the latitudinal gradient and seasonality) may help to improve the skill of climate models to reproduce past climate and thereby reduce uncertainty in future projections.


2020 ◽  
Vol 33 (7) ◽  
pp. 2871-2890 ◽  
Author(s):  
Sang-Ik Shin ◽  
Michael A. Alexander

AbstractProjected climate changes along the U.S. East and Gulf Coasts were examined using the eddy-resolving Regional Ocean Modeling System (ROMS). First, a control (CTRL) ROMS simulation was performed using boundary conditions derived from observations. Then climate change signals, obtained as mean seasonal cycle differences between the recent past (1976–2005) and future (2070–99) periods in a coupled global climate model under the RCP8.5 greenhouse gas trajectory, were added to the initial and boundary conditions of the CTRL in a second (RCP85) ROMS simulation. The differences between the RCP85 and CTRL simulations were used to investigate the regional effects of climate change. Relative to the coarse-resolution coupled climate model, the downscaled projection shows that SST changes become more pronounced near the U.S. East Coast, and the Gulf Stream is further reduced in speed and shifted southward. Moreover, the downscaled projection shows enhanced warming of ocean bottom temperatures along the U.S. East and Gulf Coasts, particularly in the Gulf of Maine and the Gulf of Saint Lawrence. The enhanced warming was related to an improved representation of the ocean circulation, including topographically trapped coastal ocean currents and slope water intrusion through the Northeast Channel into the Gulf of Maine. In response to increased radiative forcing, much warmer than present-day Labrador Subarctic Slope Waters entered the Gulf of Maine through the Northeast Channel, warming the deeper portions of the gulf by more than 4°C.


2019 ◽  
Author(s):  
Fernanda Casagrande ◽  
Ronald Buss de Souza ◽  
Paulo Nobre ◽  
Andre Lanfer Marquez

Abstract. The numerical climate simulation from Brazilian Earth System Model (BESM) are used here to investigate the response of Polar Regions to a forced increase of CO2 (Abrupt-4xCO2) and compared with Coupled Model Intercomparison Project 5 (CMIP5) simulations. Polar Regions are described as the most climatically sensitive areas of the globe, with an enhanced warming occurring during the cold seasons. The asymmetry between the two poles is related to the thermal inertia and the coupled ocean atmosphere processes involved. While in the northern high latitudes the amplified warming signal is associated to a positive snow and sea ice albedo feedback, for southern high latitudes the warming is related to a combination of ozone depletion and changes in the winds pattern. The numerical experiments conducted here demonstrated a very clear evidence of seasonality in the polar amplification response. In winter, for the northern high latitudes (southern high latitudes) the range of simulated polar warming varied from 15 K to 30 K (2.6 K to 10 K). In summer, for northern high latitudes (southern high latitudes) the simulated warming varies from 3 K to 15 K (3 K to 7 K). The vertical profiles of air temperature indicated stronger warming at surface, particularly for the Arctic region, suggesting that the albedo-sea ice feedback overlaps with the warming caused by meridional transport of heat in atmosphere. The latitude of the maximum warming was inversely correlated with changes in the sea ice within the model’s control run. Three climate models were identified as having high polar amplification for cold season in both poles: MIROC-ESM, BESM-OA V2.5 and GFDL-ESM2M. We suggest that the large BIAS found between models can be related to the differences in each model to represent the feedback process and also as a consequence of the distinct sea ice initial conditions of each model. The polar amplification phenomenon has been observed previously and is expected to become stronger in coming decades. The consequences for the atmospheric and ocean circulation are still subject to intense debate in the scientific community.


2014 ◽  
Vol 7 (6) ◽  
pp. 2613-2638 ◽  
Author(s):  
E. W. Blockley ◽  
M. J. Martin ◽  
A. J. McLaren ◽  
A. G. Ryan ◽  
J. Waters ◽  
...  

Abstract. The Forecast Ocean Assimilation Model (FOAM) is an operational ocean analysis and forecast system run daily at the Met Office. FOAM provides modelling capability in both deep ocean and coastal shelf sea regimes using the NEMO (Nucleus for European Modelling of the Ocean) ocean model as its dynamical core. The FOAM Deep Ocean suite produces analyses and 7-day forecasts of ocean tracers, currents and sea ice for the global ocean at 1/4° resolution. Satellite and in situ observations of temperature, salinity, sea level anomaly and sea ice concentration are assimilated by FOAM each day over a 48 h observation window. The FOAM Deep Ocean configurations have recently undergone a major upgrade which has involved the implementation of a new variational, first guess at appropriate time (FGAT) 3D-Var, assimilation scheme (NEMOVAR); coupling to a different, multi-thickness-category, sea ice model (CICE); the use of coordinated ocean-ice reference experiment (CORE) bulk formulae to specify the surface boundary condition; and an increased vertical resolution for the global model. In this paper the new FOAM Deep Ocean system is introduced and details of the recent changes are provided. Results are presented from 2-year reanalysis integrations of the Global FOAM configuration including an assessment of short-range ocean forecast accuracy. Comparisons are made with both the previous FOAM system and a non-assimilative FOAM system. Assessments reveal considerable improvements in the new system to the near-surface ocean and sea ice fields. However there is some degradation to sub-surface tracer fields and in equatorial regions which highlights specific areas upon which to focus future improvements.


Sign in / Sign up

Export Citation Format

Share Document