Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia)

The Holocene ◽  
2019 ◽  
Vol 29 (12) ◽  
pp. 1906-1920 ◽  
Author(s):  
Chéïma Barhoumi ◽  
Odile Peyron ◽  
Sébastien Joannin ◽  
Dmitri Subetto ◽  
Alexander Kryshen ◽  
...  

In many boreal regions of Russia the past natural variability of forest fire activity remains largely undocumented, preventing accurate assessment of the impact of current climate warming on forest ecosystem dynamics. This study aims to reconstruct the Holocene fire history of the northern Ural mountain foothills, in the Komi Republic, based on analyses of charcoal particles from peatland deposits and coupled with dendrochronological investigations. The results show that there was a gradual increase in forest fire activity during the past 11,000 years. Between 11,000 and 5100 cal. yr BP, the mean fire return interval (FRI) oscillated between 600 and 200 years. During this period, regional data showed that cold temperature, humid climatic conditions, combined with steppe vegetation between 11,000–9000 cal. BP, and then the development of spruce-dominated forest between 9300 and 4600 cal. yr BP, were less conducive to fires. After 5100 cal. yr BP, a gradual increase in drought conditions through reduced precipitations, associated with the establishment of a Scots pine forest favored fire frequency, with a mean FRI under 200 years (range, 200–40 years). Nowadays (since CE 1500), human activity induces an unprecedented fire activity with a mean FRI below 100 years (range, 100–40 years).

2014 ◽  
Vol 10 (1) ◽  
pp. 809-857 ◽  
Author(s):  
P. Zennaro ◽  
N. Kehrwald ◽  
J. R. McConnell ◽  
S. Schüpbach ◽  
O. Maselli ◽  
...  

Abstract. Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales, but there remains a need for broad-scale fire proxies that span millennia in order to understand the role of fire in the carbon cycle and climate system. We use the specific biomarker levoglucosan, and multi-source black carbon and ammonium concentrations to reconstruct fire activity from the North Greenland Eemian (NEEM) ice cores (77.49° N; 51.2° W, 2480 m a.s.l.) over the past 2000 years. Increases in boreal fire activity (1000–1300 CE and 1500–1700 CE) over multi-decadal timescales coincide with the most extensive central and northern Asian droughts of the past two millennia. The NEEM biomass burning tracers coincide with temperature changes throughout much of the past 2000 years except for during the extreme droughts, when precipitation changes are the dominant factor. Many of these multi-annual droughts are caused by monsoon failures, thus suggesting a connection between low and high latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the NEEM camp. During major fire events, however, isotopic analyses of dust, back-trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.


2016 ◽  
Vol 16 (1) ◽  
pp. 239-253 ◽  
Author(s):  
I. Lehtonen ◽  
A. Venäläinen ◽  
M. Kämäräinen ◽  
H. Peltola ◽  
H. Gregow

Abstract. The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996–2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.


2019 ◽  
Vol 39 (12) ◽  
pp. 1937-1960 ◽  
Author(s):  
Katarína Merganičová ◽  
Ján Merganič ◽  
Aleksi Lehtonen ◽  
Giorgio Vacchiano ◽  
Maša Zorana Ostrogović Sever ◽  
...  

Abstract Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.


2014 ◽  
Vol 10 (5) ◽  
pp. 1905-1924 ◽  
Author(s):  
P. Zennaro ◽  
N. Kehrwald ◽  
J. R. McConnell ◽  
S. Schüpbach ◽  
O. J. Maselli ◽  
...  

Abstract. Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.


2007 ◽  
Vol 55 (1) ◽  
pp. 74 ◽  
Author(s):  
Patrick T. Moss ◽  
Ian Thomas ◽  
Michael Macphail

A record of vegetation and environmental change over the past 3000 years was obtained through pollen and charcoal analysis of sediments from a grassy plain in the Mersey Valley, Tasmania. The results tentatively suggest that Aborigines had an impact on the environment of the Mersey Valley, although the scale of the impact is difficult to quantify owing to complexities associated with the fire history and sedimentary processes. In addition, a strong regional climate signal (drier late Holocene environments) was observed, suggesting that both anthropogenic and climatic factors are required to explain pre-European environments. The study also showed the dramatic impact European settlers had on the Australian environment, with massive land clearance, introduction of exotic plant types and increased sedimentation rates.


2019 ◽  
Vol 11 (2) ◽  
pp. 374 ◽  
Author(s):  
Vítor Martinho

Recent forest fire activity has resulted in several consequences across different geographic locations where both natural and socioeconomic conditions have promoted a favorable context for what has happened in recent years in a number of countries, including Portugal. As a result, it would be interesting to examine the implications of forest fire activity in terms of the socioeconomic dynamics and performance of the agroforestry sectors in the context of those verified in the Portuguese municipalities. For this purpose, data from Statistics on Portugal was considered for output and employment from the business sector related to agricultural and forestry activities, which were disaggregated at the municipality level, for the period 2008–2015. Data for the burnt area was also considered in order to assess the impact of forest fires. The data was analyzed using econometric models in panel data based on the Keynesian (Kaldor laws) and convergence (conditional approaches) theories. The results from the Keynesian approaches show that there are signs of increasing returns to scale in the Portuguese agroforestry sectors, where the burnt area increased employment growth in agricultural activities and decreased employment in the forestry sector. Forest fires seem to create favorable conditions for agricultural employment in Portuguese municipalities and the inverse occurs for forestry employment. Additionally, some signs of convergence were identified between Portuguese municipalities for agroforestry output and employment, as well for the burnt areas. However, signs of divergence (increasing returns to scale) from the Keynesian models seem to be stronger. On the other hand, the evidence of beta convergence for the burnt areas are stronger than those verified for other variables, showing that the impacts from forest fires are more transversal across the whole country (however not enough to have sigma convergence).


The Holocene ◽  
2021 ◽  
pp. 095968362098803
Author(s):  
Zoe A Rushton ◽  
Megan K Walsh

Fire histories of mid-elevation mixed-conifer forests are uncommon in the eastern Cascades, limiting our understanding of long-term fire dynamics in these environments. The purpose of this study was to reconstruct the fire and vegetation history for a moist mid-elevation mixed-conifer site, and to determine whether Holocene fire activity in this watershed was intermediate to fire regimes observed at higher and lower elevations in the eastern Cascades. Fire activity and vegetation change was reconstructed using macroscopic charcoal and pollen analysis of sediment core from Long Lake. This site is located ~45 km west of Yakima, WA, and exists in a grand fir-dominated, mixed-conifer forest. Results show low fire activity from ca. 9870 to 6000 cal yr BP, after which time fire increased and remained frequent until ca. 500 cal yr BP. A woodland environment existed at the site in the early Holocene, with the modern coniferous forest establishing ca. 6000–5500 cal yr BP. A mixed-severity fire regime has existed at the site for the past ~6000 years, with both higher- and lower-severity fire episodes occurring on average every ~80–100 years. However, only one fire episode occurred in the Long Lake watershed during the past 500 years, and none within the past ~150 years. Based on a comparison with other eastern Cascade sites, Holocene fire regimes at Long Lake, particularly during the late Holocene, appear to be intermediate between those observed at higher- and lower elevation sites, both in terms of fire severity and frequency.


2021 ◽  
Author(s):  
Marianne Vogel ◽  
Chéïma Barhoumi ◽  
Hanane Limani ◽  
Sébastien Joannin ◽  
Odile Peyron ◽  
...  

<p><strong>Holocene fire history of the southern Lake Baikal region</strong></p><p>The catastrophic fire years that have taken place during the last decade in Siberia and in the boreal forests in general, directly linked to global warming, have had dramatic repercussions on the human populations of these regions. Past fire reconstruction studies are currently the only way to study the past dynamics of these fires and to understand their link with climate, vegetation and human activities. However, few studies of the dynamics of these fires are available in Siberia, and none have been carried out on the scale of the Holocene. This study aims to present the first reconstruction of the fire history during the Holocene based on sedimentary charcoals from two lakes localised on the southern shore of Lake Baikal, in Siberia. Two lakes have been sampled, Lake Ébène and Lake Jarod. The results showed a similar trend between the two lakes,with severe and intense crown fires during the early Holocene and less severe surface fires after 6 500 cal. yr BP. According to pollen reconstructions carried out near the studied lakes, a vegetation transition occurred at the same time. Picea obovata was dominant during the early humid Holocene. After 6 500 cal. yr BP, conditions were drier and Pinus sylvestris and Pinus sibirica became the dominant species. Over the past 1 500 years, the greater presence of human populations has firstly resulted in an increase of the fire frequency, then probably in its maintenance after 600 cal. yr BP in lake Ébène and to finish, in its suppression after 900 cal. yr BP in Lake Jarod. The decrease of fire frequency at the end of the 20th century could be explained by new fire management policies.</p>


2021 ◽  
Vol 118 (25) ◽  
pp. e2103135118
Author(s):  
Philip E. Higuera ◽  
Bryan N. Shuman ◽  
Kyra D. Wolf

The 2020 fire season punctuated a decades-long trend of increased fire activity across the western United States, nearly doubling the total area burned in the central Rocky Mountains since 1984. Understanding the causes and implications of such extreme fire seasons, particularly in subalpine forests that have historically burned infrequently, requires a long-term perspective not afforded by observational records. We place 21st century fire activity in subalpine forests in the context of climate and fire history spanning the past 2,000 y using a unique network of 20 paleofire records. Largely because of extensive burning in 2020, the 21st century fire rotation period is now 117 y, reflecting nearly double the average rate of burning over the past 2,000 y. More strikingly, contemporary rates of burning are now 22% higher than the maximum rate reconstructed over the past two millennia, during the early Medieval Climate Anomaly (MCA) (770 to 870 Common Era), when Northern Hemisphere temperatures were ∼0.3 °C above the 20th century average. The 2020 fire season thus exemplifies how extreme events are demarcating newly emerging fire regimes as climate warms. With 21st century temperatures now surpassing those during the MCA, fire activity in Rocky Mountain subalpine forests is exceeding the range of variability that shaped these ecosystems for millennia.


1993 ◽  
Vol 40 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Sally P. Horn

AbstractPollen and charcoal analysis of a 5.6-m sediment core from Lago de las Morrenas (9°29′N, 83°29′W; 3480 m) provides evidence of postglacial vegetation and fire history in the highlands of the Cordillera de Talamanca, Costa Rica. The site is presently surrounded by treeless páramo vegetation and apparently has been so since deglaciation about 10,000 yr B.P. Pollen spectra suggest no pronounced changes in vegetation since ice retreat. Fires set by people or lightning have burned the páramo repeatedly, with fire activity probably highest during the late Holocene, but these fires have not carved páramo from forest. Pollen percentages for Gramineae and other páramo taxa decline upward, whereas percentages for certain subalpine, lower montane, and lowland forest taxa increase slightly; these changes may reflect the impact of prehistoric human activity or slight upslope migrations of forest taxa owing to climatic warming. There is no clear evidence of higher timberlines during the mid-Holocene.


Sign in / Sign up

Export Citation Format

Share Document