Computer simulations of NIR spectra of thymol – Towards linking basic and analytical NIRS

NIR news ◽  
2018 ◽  
Vol 29 (7) ◽  
pp. 13-16 ◽  
Author(s):  
Krzysztof B Beć ◽  
Justyna Grabska

Analytical near-infrared spectroscopy has been evolving rapidly over the last decades reaching a remarkable value for both industrial and institutional laboratories nowadays. Its growth has been strongly connected to focussed development of the instrumentation and multi-variate analytical methods. Multi-variate analysis gives near-infrared spectroscopy the desired analytical performance level but lacks the ability to provide physical insights into the analysed molecular system. Large amount of information carried in an NIR spectrum is omitted in analytical routines. In the present article, we review the latest accomplishments in cross-field research aimed at connecting the basic and analytical near-infrared spectroscopy. An example of thymol molecule, an important constituent of a traditional herbal medicine Thymi herba, is discussed. The key novelty in this case is computer simulation of NIR spectra which allows gaining better understanding of how spectra forming factors correspond to the partial least squares regression coefficients with special attention paid to the role of intermolecular interactions.

2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.


2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


2021 ◽  
Vol 271 ◽  
pp. 03067
Author(s):  
Xiaohong He ◽  
Zhihong Song ◽  
Haifei Shang ◽  
Silang Yang ◽  
Lujing Wu ◽  
...  

Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence identification. However, these methods are expensive and time-consuming, and suffer from false positive and/or false negative results. Thus, there is an urgent need for developing a cost effective, rapid and accurate diagnostic method for HIV-1 infection. In order to reduce the barriers for effective diagnosis, a near-infrared spectroscopy (NIR) method was used to detect the HIV-1 virus in human serum, specifically, three absorption peaks with dose-dependent at 1582nm, 1810nm and 2363nm were found by multiple FBiPLSR test analysis for HIV-nano and HIV-EGFP, but not for MLV. Therefore, we recommend the use of 1582nm, 1810nm and 2363nm as the characteristic spectrum peak, for early screening and rapid diagnosis of serum HIV.


2018 ◽  
Vol 11 (7) ◽  
pp. e201700365 ◽  
Author(s):  
Raphael Henn ◽  
Christian G. Kirchler ◽  
Zora L. Schirmeister ◽  
Andreas Roth ◽  
Werner Mäntele ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 342 ◽  
Author(s):  
Fabian Herold ◽  
Thomas Gronwald ◽  
Felix Scholkmann ◽  
Hamoon Zohdi ◽  
Dominik Wyser ◽  
...  

In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.


Sign in / Sign up

Export Citation Format

Share Document