scholarly journals Long Non-Coding RNA TP53TG1 Upregulates SHCBP1 to Promote Retinoblastoma Progression by Sponging miR-33b

2021 ◽  
Vol 30 ◽  
pp. 096368972110252
Author(s):  
Hongyi Wang ◽  
Zhen Zhang ◽  
Yue Zhang ◽  
Shihai Liu ◽  
Li Li

Long non-coding RNA (lncRNA) TP53 target 1 (TP53TG1) is known to be strongly associated with tumor and cancer progression. However, its expression profile, unique role, and regulatory pathways in retinoblastoma (RB) are not known. Here, we revealed a large expression of TP53TG1 in RB tissues and cell lines. Conversely, we showed marked suppression of cell proliferation, migration, and invasion in TP53TG1 knocked down RB cells. Mechanistically, we established that TP53TG1 directly interacted with microRNA (miR)-33b in RB cells. Furthermore, TP53TG1 transcripts were found to be inversely correlated with miR-33b in RB tissues. We also showed that miR-33b suppression partly reversed the TP53TG1 knockdown mediated effects on tumor biology. Finally, TP53TG1 was shown to modulate the levels of SHC Binding and Spindle Associated 1 (SHCBP1), a direct target of miR-33b in RB cells. Based on the above data, we propose that TP53TG1 regulates RB progression via its modulation of the miR-33b/SHCBP1 pathway.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


2020 ◽  
Vol 20 (3) ◽  
pp. 2779-2787
Author(s):  
Aiyao Wang ◽  
Jun Meng ◽  
Hui Liu ◽  
Chen Li ◽  
Zhiyong Zhou

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Bin Yang ◽  
Xiaodi Tang ◽  
Zhixin Wang ◽  
Daju Sun ◽  
Xin Wei ◽  
...  

Previous studies have demonstrated that taurine-upregulated gene 1 (TUG1) was aberrantly expressed and involved in multiple types of cancer; however, the expression profile and potential role of TUG1 in prostate cancer (PCa) remains unclear. The aim of the present study was to evaluate the expression and function of TUG1 in PCa. In the present study, we analyzed TUG1 expression levels of PCa patients in tumor and adjacent normal tissue by real-time quantitative PCR. Knockdown of TUG1 by RNAi was performed to explore its roles in cell proliferation, migration, and invasion. Here we report, for the first time, that TUG1 promotes tumor cell migration, invasion, and proliferation in PCa by working in key aspects of biological behaviors. TUG1 could negatively regulate the expression of miR-26a in PCa cells. The bioinformatics prediction revealed putative miR-26a-binding sites within TUG1 transcripts. In conclusion, our study suggests that long non-coding RNA (lncRNA) TUG1 acts as a functional oncogene in PCa development.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiu Liu ◽  
Chanyuan Liu ◽  
Aijun Zhang ◽  
Qi Wang ◽  
Jiao Ge ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs has been implied to connect with cancer progression. This research was to decipher the mechanism of long non-coding RNA SDCBP2-AS1 in ovarian cancer (OC) through regulation of microRNA (miR)-100-5p and ependymin-related protein 1 (EPDR1). Methods LncRNA SDCBP2-AS1 and EPDR1 levels in OC were assessed by Gene Expression Profiling Interactive Analysis. lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 levels in OC tissues and cells were determined. SKOV3 and A2780 cells were transfected with lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1-related plasmids or sequences, and then their functions in cell viability, apoptosis, migration, and invasion were evaluated. The interplay of lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 was clarified. Results LncRNA SDCBP2-AS1 and EPDR1 levels were suppressed whilst miR-100-5p level was elevated in OC. After upregulating lncRNA SDCBP2-AS1 or EPDR1, viability, migration, and invasion of OC cells were impaired, and apoptosis rate was increased. Downregulating EPDR1 or upregulating miR-100-5p partially mitigated upregulated lncRNA SDCBP2-AS1-induced impacts on the biological functions of OC cells. LncRNA SDCBP2-AS1 sponged miR-100-5p, and EPDR1 was targeted by miR-100-5p. Conclusion It is illustrated that lncRNA SDCBP2-AS1 regulates EPDR1 by sponge adsorption of miR-100-5p to inhibit the progression of OC.


2020 ◽  
Author(s):  
Yu’e Han ◽  
Xing Liu ◽  
Guangling Li ◽  
Xia Ju ◽  
Zhongyi Song

Abstract Background Previous studies have shown that many long noncoding RNAs (lncRNAs) are involved in the pathogenesis of nasopharyngeal carcinoma (NPC). However, the regulatory mechanism of lncRNA SNHG6 remains unknown. Therefore, this study was design to preliminarily elucidate the role of SNHG6 in NPC. Methods The mRNA expression was detected by RT-qPCR. CCK-8, Transwell and dual luciferase reporter assays were used to investigate the function of SNHG6 in NPC. Results Upregulation of SNHG6 and downregulation of miR-944 were identified in NPC and were associated with TNM stage and distant metastasis in NPC patients. Additionally, SNHG6 acts as a molecular sponge of miR-944. More importantly, SNHG6 promoted NPC cell proliferation, migration and invasion by downregulating miR-944. Further, RGS17 was confirmed to be a direct target of miR-944. MiR-944 restrained NPC progression by targeting RGS17. Besides that, knockdown of RGS17 was found to block NPC progression. Upregulation of SNHG6 weakened the suppressive effect of RGS17 knockdown in NPC. Conclusion LncRNA SNHG6 promotes tumorigenesis of NPC by competitively binding to miR-944 with RGS17.


2017 ◽  
Vol 42 (6) ◽  
pp. 2194-2206 ◽  
Author(s):  
Li Li ◽  
Yingying Geng ◽  
Ru Feng ◽  
Qinqin Zhu ◽  
Bei Miao ◽  
...  

Background/Aims: The long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overexpressed in numerous cancers. However, whether MALAT1 is regulated and the related mechanisms in gastric cancer remain unclear. Methods: Immunohistochemistry and qRT-PCR analyses were used to detect the expression levels of UPF1 and MALAT1 in gastric cancer and adjacent normal tissues. MTT, cell cycle, apoptosis and transwell assays were performed to examine the effects of UPF1 on cell cycle progression, cell proliferation, apoptosis, migration and invasion. Additionally, sodium bisulfate sequencing was used to test the promoter hypermethylation on UPF1 in gastric tumor tissues. Finally, RNA immunoprecipitation and luciferase reporter analyses demonstrated that UPF1 directly bound with MALAT1. Results: The expression of UPF1 was significantly downregulated in gastric cancer and negatively correlated with MALAT1 expression. Patients with lower expression of UPF1 had poorer prognosis than those with higher expression. Overexpression of UPF1 inhibited cell proliferation, cell cycle progression, cell migration and invasion, and promoted cell apoptosis in gastric cancer cells. Moreover, the UPF1-mediated inhibition of gastric cancer progression was reversed by overexpression of MALAT1. A profound downregulation of UPF1 in gastric tumor tissues was due to promoter hypermethylation. Overexpression of UPF1 increased nonsense-mediated mRNA decay (NMD) efficiency and thus led to downregulation of MALAT1. Conclusion: Our results demonstrate that UPF1 is a potential modulator of MALAT1 and that UPF1/MALAT1 pathway could be a therapeutic target for gastric cancer.


2020 ◽  
Author(s):  
Hongle Li ◽  
Jinlin Jia ◽  
Jie Chu ◽  
Jinxiu Sheng ◽  
Chang Wang ◽  
...  

Abstract Background Recently, extensive researches have established that long non-coding RNA (lncRNA) was an important factor that is strongly related to carcinogenesis. However, the function of lncRNAs in esophageal cell squamous carcinoma (ESCC) remains to be explored. In the current study, we assessed the expression pattern and the biological function of FAM83A-AS1 in ESCC. Methods qRT-PCR was used to detect the expression of FAM83A-AS1,miR-214, and CDC25B expression in ESCCtissues and cell lines. Cell counting kit 8 (CCK-8, Transwell, apoptosis, and cell cycle assays were performed to define the function of FAM83A-AS1 in ESCC cell. Furthermore, the regulation of miR-214 by FAM83A-AS1 was defined by qRT- PCR and rescue assays.In addition, the association between CDC25B,miR-214,CDC25B were performed with qRT-PCR.Results: Here we discovered that FAM83A-AS1 was strongly expressed in ESCC tissues. FAM83A-AS1 abundance was associated with TNM stages and the differentiation grade of ESCC patients. The receiver operating characteristic curve (ROC) analysis indicated the high accuracy of FAM83A-AS1 in ESCC diagnosis. Functionally, inhibiting FAM83A-AS1 repressed cell proliferation, migration, and invasion in ESCC. In addition, we found that FAM83A-AS1 accelerated cell cycle and inhibited cell apoptosis. Mechanistically, we found that FAM83A-AS1 regulated miR-214 expression and there was a negative correlation between miR-214 and FAM83A-AS1 in ESCC. Rescue assay indicated that miR-214 could impair the suppressing effect of cell migration induced by FAM83A-AS1 depletion. Furthermore, CDC25B was a direct target of miR-214 and FAM83A-AS1 enhanced CDC25B expression while miR-214 positively CDC25B expression in ESCC. Conclusions Collectively, we concluded that FAM83A-AS1 facilitated ESCC progression by regulating the miR-214/CDC25B axis. Our study showed FAM83A-AS1 may act as a target for ESCC diagnosis and therapy.


2020 ◽  
Author(s):  
Hengbing Wang ◽  
Xiaobing Niu ◽  
Hesong Jiang ◽  
Bing Zhong ◽  
Xi Jiang ◽  
...  

Abstract Background: Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. Long non-coding RNA (lncRNA) plays an important role in BC. Methods: LINC00662 expression was identified by quantitative real-time polymerase chain reaction (qPCR) and in situ hybridization (ISH). The effect of LINC00662 on cell proliferation, apoptosis, migration and invasion was measured by CCK8 assay, colony formation assay, transwell assay, and western blot. Dual-luciferase reporter gene assay, RNA pull-down and RIP assay confirm the interaction between LINC00662 and miR-195-5p/VEGFA. The in vivo effect of LINC00662 on BC was investigated using a mouse tumorigenicity model. Results: LINC00662 was overexpressed in BC tissues and cell lines, and negatively correlated with the survival of BC patients. Overexpression of LINC00662 promoted proliferation, migration and invasion and inhibited apoptosis of BC cells, and LINC00662 knockdown abrogated this effect. Silencing LINC00662 inhibited BC growth in a subcutaneous BC tumor mouse model. LINC00662 acted as an oncogene through regulating miR-195-5p/VEGFA axes. Decreased VEGFA expression caused by LINC00662 knockdown inhibited the phosphorylation of Raf-1, MEK1/2, and ERK1/2, while this regulation effect was abrogated by miR-195-5p inhibitor. Conclusion: LINC00662 regulated the proliferation, apoptosis, migration, and invasion of BC cells probably via miR-195-5p-mediated VEGFA/Ras/Raf/MEK/ERK signaling pathway.


2018 ◽  
Vol 27 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Qianjun Li ◽  
Gang Ma ◽  
Huimin Guo ◽  
Suhua Sun ◽  
Ying Xu ◽  
...  

Background & Aims: Down-regulation of the growth arrest specific transcript 5 (GAS5) (long non-coding RNA) is associated with cell proliferation of gastric cancer (GC) and a poor prognosis. We aimed to investigate whether the variant rs145204276 of GAS5 is associated with the prognosis of GC in the Chinese population, and to unveil the regulatory mechanism underlying the GAS5 expression in GC tissues.Method: 1,253 GC patients and 1,354 healthy controls were included. The frequency of the genotype del/del and the allele del of rs145204276 were compared between the patients and the controls and between different subgroups of patients classified by clinicopathological variables. The overall survival rate was analyzed according to the Kaplan-Meier method using the log-rank test.Results: The frequency of genotype del/del was significantly lower in patients than in the controls (7.0% vs. 9.1%, p = 0.001). Kaplan-Meier analysis showed that genotype del/del was significantly associated with a higher survival rate (p = 0.01). Patients with late tumor stage were found to have a significantly lower rate of genotype del/del than those with an early tumor stage (4.9% vs. 8.8%, p = 0.01). Patients with UICC III and IV were found to have a significantly lower rate of genotype del/del than those with UICC I and II (5.3% vs. 8.1%, p = 0.02).Conclusion: The variant rs145204276 of GAS5 is associated with the development and prognosis of GC. The allele del of rs145204276 is associated with a remarkably lower incidence of cancer progression and metastasis.


Sign in / Sign up

Export Citation Format

Share Document