scholarly journals Thermal Elastic-Plastic Stress Analysis of an Aluminium Composite Disc under Linearly Decreasing Thermal Loading

2008 ◽  
Vol 17 (3) ◽  
pp. 096369350801700 ◽  
Author(s):  
Muzaffer Topcu ◽  
Gurkan Altan ◽  
Hasan Callioglu ◽  
Burcin Deda Altan

In this study, an elastic-plastic thermal stress analysis of an orthotropic aluminium metal matrix composite disc with a hole has been investigated analytically for non-linear hardening material behaviour. The aluminium composite disc reinforced curvilinearly by steel fibres is produced under hydraulic press. The mechanical properties of the composite disc are obtained by tests. A computer program is developed to calculate the thermal stresses under a linearly decreasing temperature from inner surface to outer surface. Elastic, elastic-plastic and residual thermal stress distributions are obtained analytically from inner surface to outer surface and they are presented in tables and Fig. s. The elastic-plastic solution is performed for the plastic region expanding around the inner surface. The magnitude of the tangential stress component has been found out in this study to be higher than the magnitude of the radial stress component. Besides, the tangential stress component is compressive at the inner surface and tensile at the outer surface. The magnitude of the tangential residual stress component is the highest at the inner surface of the composite disc.

1956 ◽  
Vol 23 (3) ◽  
pp. 395-402
Author(s):  
Jerome Weiner

Abstract The thermal stresses in a free plate of elastoplastic material subjected to a varying heat input over one face are determined. A heuristic solution is first found by suitable modifications of the known elastic solution. It is then verified that the solution satisfies all the conditions of the appropriate uniqueness theorem and represents therefore the unique solution to the problem. Residual stresses are determined and found to depend markedly on the peak magnitude of the heat input.


Author(s):  
Seiji Ioka ◽  
Shiro Kubo ◽  
Mayumi Ochi ◽  
Kiminobu Hojo

Thermal fatigue may develop in piping elbow with high temperature stratified flow. To prevent the fatigue damage by stratified flow, it is important to know the distribution of thermal stress and temperature history in a pipe. In this study, heat conduction inverse analysis method for piping elbow was developed to estimate the temperature history and thermal stress distribution on the inner surface from the outer surface temperature history. In the inverse analysis method, the inner surface temperature was estimated by using the transfer function database which interrelates the inner surface temperature with the outer surface temperature. Transfer function database was calculated by FE analysis in advance. For some patterns of the temperature history, inverse analysis simulations were made. It was found that the inner surface temperature history was estimated with high accuracy.


2012 ◽  
Vol 232 ◽  
pp. 63-67
Author(s):  
Azad Mohammed Ali Saber

An analytical elastic-plastic stress analysis is carried out on metal-matrix composite beams of arbitrary orientation, supported from two ends under a transverse uniformly distributed load. The composite layer consists of stainless steel fiber and aluminum matrix. The material is assumed to be perfectly plastic during the elastic–plastic solution. The intensity of the uniform force is chosen at a small value; therefore, the normal stress component is neglected in the elastic-plastic solution. The expansion of the plastic region and plastic stress component of σxare determined for orientation angles of 0, 30, 45, 60 and 90o. Plastic yielding occurs for 0 o and 90 o orientation angles on the lower and upper surfaces of the beam at the same distances from the mid-point. However, it starts first at the lower surface for 30, 45 and 60 o orientation angles.


2002 ◽  
Vol 21 (2) ◽  
pp. 175-176
Author(s):  
Onur Sayman ◽  
Mesut Uyaner ◽  
Necmeitin Tarakçioglu

In this study, an elastic-plastic stress analysis is carried out in a thermoplastic composite cantilever beam loaded by a bending moment at the free end. The composite beam is reinforced unidirectionally by steel fibers at 0, 30. 45, 60, and 90° orientation angles. An analytical solution is performed for satisfying both the governing differential equation in the plane stress case and boundary conditions for small plastic deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. It is found that the intensity of the residual stress component of σ x is maximum at the upper and lower surfaces or at the boundary of the elastic and plastic regions. The composite material is assumed to be as hardening linearly. The Tsai-Hill theory is used as a yield criterion.


Author(s):  
Suhash Ghosh ◽  
Chittaranjan Sahay ◽  
Joseph Connors

Numerous mathematical investigations of laser transformation hardening process have been conducted in the past three decades. The commonly used strategy of a sequentially coupled temperature-stress analysis is to first obtain temperature results from the temperature elements in a thermal loading model, followed by the calculations of thermal stresses from the structural elements under structural loading. Temperature is used as a predefined variable (varies with position and time only) as it is assumed to not change by the stress analysis. Fully coupled thermal-stress analysis is needed when the stress analysis is dependent on the temperature distribution and the temperature distribution depends on the stress solution This paper compares these two finite element (FE) based approaches for modeling temperature and thermal stress evolution in laser transformation hardening of hypoeutectoid steels. The dependence of temperature results on stresses and vice versa at higher temperatures involving significant inelastic strains has been demonstrated. Preliminary investigation reveals that under such circumstances thermal and mechanical solutions must be obtained simultaneously rather than sequentially.


2002 ◽  
Vol 21 (2) ◽  
pp. 175-192
Author(s):  
Onur Sayman ◽  
Mesut Uyaner ◽  
Necmettin Tarakçioglu

In this study, an elastic-plastic stress analysis is carried out in a thermoplastic composite cantilever beam loaded by a bending moment at the free end. The composite beam is reinforced unidirectionally by steel fibers at 0, 30, 45, 60, and 90° orientation angles. An analytical solution is performed for satisfying both the governing differential equation in the plane stress case and boundary conditions for small plastic deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. It is found that the intensity of the residual stress component of σ x is maximum at the upper and lower surfaces or at the boundary of the elastic and plastic regions. The composite material is assumed to be as hardening linearly. The Tsai-Hill theory is used as a yield criterion.


Sign in / Sign up

Export Citation Format

Share Document