Dynamic Changes in the Bivariable Distribution of Urinary Iodine Concentration and Thyroid Volume in Children Aged 8 to 10 Years in China

2017 ◽  
Vol 29 (4) ◽  
pp. 288-295 ◽  
Author(s):  
Zhengyuan Wang ◽  
Xiaohui Su ◽  
Peng Liu ◽  
Shoujun Liu

National iodine-deficiency disorder surveillance surveys were conducted in 1999, 2005, and 2011 in China. Probability-proportional-to-size sampling technique was used to select sampling units. The mean of thyroid volume (Tvol) in the 100 to 199 µg/L UIC (urinary iodine concentration) group was significantly lower than that in the 200 to 299 µg/L UIC group in 2011 ( P < .05). The status in the 100 to 199 µg/L versus ≥300 µg/L and 200 to 299 µg/L versus ≥300 µg/L groups in 1999, and 100 to 199 µg/L versus ≥300 µg/L group in 2011 were the same ( P < .05). The mean Tvol in the <100 µg/L UIC group was significantly higher than that in the 100 to 199 µg/L UIC group in 1999 ( P < .05). Both insufficient and excess iodine may be associated with an increase in Tvol, and adequate iodine intake should be defined as median UIC 100 to 299 µg/L.

2020 ◽  
Vol 9 (5) ◽  
pp. 379-386
Author(s):  
Ning Yao ◽  
Chunbei Zhou ◽  
Jun Xie ◽  
Xinshu Li ◽  
Qianru Zhou ◽  
...  

Objective The remarkable success of iodine deficiency disorders (IDD) elimination in China has been achieved through a mandatory universal salt iodization (USI) program. The study aims to estimate the relationship between urinary iodine concentration (UIC) and iodine content in edible salt to assess the current iodine nutritional status of school aged children. Methods A total of 5565 students from 26 of 39 districts/counties in Chongqing participated in the study, UIC and iodine content in table salt were measured. Thyroid volumes of 3311 students were examined by ultrasound and goiter prevalence was calculated. Results The overall median UIC of students was 222 μg/L (IQR: 150-313 μg/L). Median UIC was significantly different among groups with non-iodized salt (iodine content <5 mg/kg), inadequately iodized salt (between 5 and 21 mg/kg), adequately iodized (between 21 and 39 mg/kg) and excessively iodized (>39 mg/kg) salt (P < 0.01). The total goiter rate was 1.9% (60/3111) and 6.0% (186/3111) according to Chinese national and WHO reference values, respectively. Thyroid volume and goiter prevalence were not different within the three iodine nutritional status groups (insufficient, adequate and excessive, P > 0.05). Conclusions The efficient implementation of current USI program is able to reduce the goiter prevalence in Chongqing as a low incidence of goiter in school aged children is observed in this study. The widened UIC range of 100–299 μg/L indicating sufficient iodine intake is considered safe with a slim chance of causing goiter or thyroid dysfunction. Further researches were needed to evaluate the applicability of WHO reference in goiter diagnose in Chongqing or identifying more accurate criteria of normal thyroid volume of local students in the future.


2011 ◽  
Vol 165 (5) ◽  
pp. 745-752 ◽  
Author(s):  
Christine D Thomson ◽  
Jennifer M Campbell ◽  
Jody Miller ◽  
Sheila A Skeaff

ObjectiveIodine deficiency has re-emerged in New Zealand, while selenium status has improved. The aim of this study was to investigate the effects of excess iodine intake as iodate on thyroid and selenium status.MethodsIn a randomized controlled trial on older people (mean±s.d. 73±4.8 years;n=143), two groups received >50 mg iodine as iodate/day for 8 weeks because of supplement formulation error, either with 100 μg selenium (Se+highI) or without selenium (highI). Four other groups received 80 μg iodine as iodate/day with selenium (Se+lowI) or without selenium (lowI), selenium alone (Se+), or placebo. Thyroid hormones, selenium status, and median urinary iodine concentration (MUIC) were compared at weeks 0, 8, and 4 weeks post-supplementation.ResultsMUIC increased nine- and six-fold in Se+highI and highI groups, decreasing to baseline by week 12. Plasma selenium increased in selenium-supplemented groups (P<0.001). The level of increase in whole blood glutathione peroxidase (WBGPx) in the Se+highI group was smaller than Se+ (P=0.020) and Se+lowI (P=0.007) groups. The decrease in WBGPX in the highI group was greater than other non-selenium-supplemented groups, but differences were not significant. Ten of 43 participants exposed to excess iodate showed elevated TSH (hypothyroidism) at week 8. In all but two, TSH had returned to normal by week 12. In three participants, TSH decreased to <0.10 mIU/l (hyperthyroidism) at week 8, remaining low at week 12.ConclusionsExcess iodate induced hypothyroidism in some participants and hyperthyroidism in others. Most abnormalities disappeared after 4 weeks. Excess iodate reduced WBGPx activity and resulted in smaller increases in WBGPx after selenium supplementation.


2007 ◽  
Vol 10 (12A) ◽  
pp. 1596-1599 ◽  
Author(s):  
Fereidoun Azizi

AbstractObjective: To describe studies evaluating urinary iodine excretion during pregnancy and lactation in women living in cities with adequate or more than adequate iodine intake.Design: Cross-sectional study conducted between 1996 and 1998 in pregnant women and a study of lactating women conducted in 2003.Settings and Subjects: Pregnant women attending prenatal clinics in four cities in the Islamic Republic of Iran. Urinary iodine excretion and thyroid volume was measured in 403 women. In a second study, 100 lactating women from Taleghani Hospital in Gorgan, Iran were evaluated for thyroid size, and both urinary and breast milk iodine concentrations were determined.Results: In Rasht city, 84% of pregnant women had a urinary iodine concentration of ≥ 200 μg l-1, while in the other cities this percentage ranged from 45 to 55%. When data were combined for the cities of Ilam, Isfahan and Tehran, where women have an adequate or more than adequate median urinary iodine concentration, 51% of pregnant women had a urinary iodine concentration less than that recommended during pregnancy. In Rasht, where the median urinary iodine concentration indicates an excessive iodine intake, 15.4% of pregnant women had a urinary iodine concentration < 200 μg l-1. The mean urinary iodine concentration in lactating women was 250 μg l-1, and 16% of women had a urinary iodine concentration < 100 μg l-1. Grade 1 goitre was present in 8% of lactating women, and another 8% had grade 2 goitre.Conclusions: Findings of this study call for further attention to iodine intake during pregnancy and lactation. The currently recommended intake of iodine through universal salt iodisation may not be adequate for pregnant and lactating women, and supplementation during pregnancy and lactation should be further considered in light of the latest recommendations.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 858
Author(s):  
Tedson Lukindo ◽  
Ray Masumo ◽  
Adam Hancy ◽  
Sauli E. John ◽  
Heavenlight A. Paulo ◽  
...  

Background: Deficient and excess iodine intake during pregnancy can lead to serious health problems. In Tanzania, information available on iodine status during pregnancy is minimal. The aim of this study was to assess the iodine status and its association with sociodemographic factors in pregnant women in the Mbeya region, Tanzania. Method: A cross sectional survey involving 420 pregnant women (n=420) aged between 15-49 years registered in antenatal care clinics was conducted. Data were collected via interviews and laboratory analysis of urinary iodine concentration (UIC). Results: Median UIC was 279.4μg/L (+/-26.1) to 1915μg/L. Insufficient iodine intake (UIC below 150μg/L) was observed in 17.14% of participants, sufficient intake in 24.29% and 58.57% had intakes above the recommended level (>250μg/L). Rungwe district council (DC) had the highest proportion of patients (27.9%) with low iodine levels, while Chunya and Mbarali DCs had the greatest proportion of those with UIC’s, over the WHO recommended level. Fish consumption and education status were associated with increased risk of insufficient iodine while individuals in Mbalali DC aged between 35-49 years were associated with increased risk of UIC above recommended level. Conclusion: Both deficient and excess iodine intake remains a public health problem, especially in pregnant women in Tanzania. Therefore, educational programs on iodine intake are needed to ensure this population has an appropriate iodine intake to prevent any health risks to the mother and the unborn child.


2001 ◽  
pp. 595-603 ◽  
Author(s):  
WM Wiersinga ◽  
J Podoba ◽  
M Srbecky ◽  
M van Vessem ◽  
HC van Beeren ◽  
...  

BACKGROUND: Iodine deficiency and endemic goiter have been reported in the past in The Netherlands, especially in the southeast. OBJECTIVE: To evaluate iodine intake and thyroid size in Dutch schoolchildren, contrasting those living in a formerly iodine-deficient region in the east (Doetinchem) with those living in an iodine-sufficient region in the west (Amsterdam area). DESIGN: Cross-sectional survey of 937 Dutch schoolchildren aged 6--18 years, of whom 390 lived in the eastern and 547 in the western part of the country. METHODS: Thyroid size was assessed by inspection and palpation as well as by ultrasound. Iodine intake was evaluated by questionnaires on dietary habits and by measurement of urinary iodine concentration. RESULTS: Eastern and western regions were similar with respect to median urinary iodine concentration (15.7 and 15.3 microg/dl, NS, Mann-Whitney U test), goiter prevalence by inspection and palpation (0.8 and 2.6%, P=0.08, chi-squared test), and thyroid volumes. The P97.5 values of thyroid volumes per age and body surface area group were all lower than the corresponding sex-specific normative WHO reference values. Iodized salt was not used by 45.7% of households. Daily bread consumption was five slices by boys and four slices by girls. Weekly milk consumption was 3 liters by boys and 2 liters by girls. Seafish was consumed once monthly. From these figures we calculated a mean daily iodine intake of 171 microg in boys and 143 microg in girls, in good agreement with the measured median urinary concentration of 16.7 microg/dl in boys and 14.5 microg/dl in girls. The sex difference in iodine excretion is fully accounted for by an extra daily consumption of one slice of bread (20 microg I) and one-seventh of a liter of milk (8.3 microg I) by boys. Thyroid volume increases with age, but a steep increase by 41% was observed in girls between 11 and 12 years, and by 55% in boys between 13 and 14 years, coinciding with peak height velocity. Girls have a larger thyroid volume at the ages of 12 and 13 years, but thyroid volume is larger in boys as of the age of 14 years. CONCLUSIONS: (1) Iodine deficiency disorders no longer exist in The Netherlands. (2) Bread consumption remains the main source of dietary iodine in The Netherlands; the contribution of iodized table salt and seafish is limited. (3) The earlier onset of puberty in girls renders their thyroid volume larger than in boys at the age of 12--13 years, but boys have a larger thyroid volume as of the age of 14 years.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Katie Nicol ◽  
Cara Swailes ◽  
Layla Alahmari ◽  
Emilie Combet

AbstractIntroduction: Most consumers remain unaware of iodine sources in the diet. With no prophylaxis, iodine insufficiency remains a largely unappreciated issue in the UK. Including seaweed to the food supply represents a solution and opportunity but this supply needs to be carefully curated and calibrated, as excess iodine may be harmful for thyroid health. This project aimed to test the efficacy of a proof-of-concept reformulated food using seaweed as an ingredient source of iodine, to supplement women who have a habitual low iodine intake.Materials and Methods: Self-reported healthy women, pre-menopausal who avoid iodine-rich foods were randomised to: P1) reformulated food (pizza)with seaweed ingredient, or P2) a control food, similar to P1 but without supplemental iodine, or S1) control, empty capsules, or S2) PureSea Natural ascophyllum nodosum seaweed capsules, the ingredient used in P1. Capsules or food were to be consumed three times per week (providing 400μg iodine per intake). At least 10 spot urine samples were collected per person over at least 3 days preceding each study point. Urinary iodine was measured with a modified Sandell-Koltoff assay.Results: Participants (n = 96, median age 29, IQR 23–42) had a habitual iodine intake of 64μg/d (IQR 39–119, no detectable difference between groups). Dropout rates at 3-month were 41% (P1 &P2 each), 21% for S1, 11% for S2.Baseline urinary iodine concentration (UIC) was low/marginal, at 66μg/L (IQR 34-71), 64μg/L (IQR 40-96), 54μg/L (IQR 31-86) and 39μg/L (IQR 21-64) for P1, P2, S1 and S2 respectively (no difference between groups, p > 0.05).Change in UIC differed between groups at week-2 (p < 0.001), increasing in P1 & S2: by 45μg/L (IQR 2-69), and 35μg/L (IQR 13-48), respectively, decreasing in S1: -14μg/L (IQR –24-(–1)), with no change in group P2. This remained true for groups S1 & S2 when urinary iodine excretion was corrected for creatinine.After 3 months, differences in changes from baselines remained between groups (p < 0.01), with an increase in groups P1 and S2: 28μg/L (IQR 1-112), 43μg/L (IQR 23-93) but not groups P2 or S1. This remained true when UIC was corrected for creatinine.Changes in weight between and within groups were not detected at either time points, with group median changes within 2 kg of baseline weight.Discussion: Iodine-rich seaweed is effective in increasing the iodine status of women with a low habitual iodine intake, as a supplement, or as an ingredient in a cooked reformulated product. In term of feasibility, large attrition in the food groups P1 and P2 demands further attention, for interpretation of data and future translation of the findings.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 295
Author(s):  
Kjersti Sletten Bakken ◽  
Ingvild Oma ◽  
Synne Groufh-Jacobsen ◽  
Beate Stokke Solvik ◽  
Lise Mette Mosand ◽  
...  

Mild to moderate iodine deficiency is common among women of childbearing age. Data on iodine status in infants are sparse, partly due to the challenges in collecting urine. Urinary iodine concentration (UIC) is considered a good marker for recent dietary iodine intake and status in populations. The aim of this study was to investigate the reliability of iodine concentration measured in two spot-samples from the same day of diaper-retrieved infant urine and in their mothers’ breastmilk. We collected urine and breastmilk from a sample of 27 infants and 25 mothers participating in a cross-sectional study at two public healthcare clinics in Norway. The reliability of iodine concentration was assessed by calculating the intraclass correlation coefficients (ICC) and the coefficient of variation (CV). The ICC for infants’ urine was 0.64 (95% confidence interval (CI) 0.36–0.82), while the ICC for breastmilk was 0.83 (95% CI 0.65–0.92) Similarly, the intraindividual CV for UIC was 0.25 and 0.14 for breastmilk iodine concentration (BIC). Compared to standard methods of collecting urine for measuring iodine concentration, the diaper-pad collection method does not substantially affect the reliability of the measurements.


2020 ◽  
pp. 1-9
Author(s):  
M. Dineva ◽  
M. P. Rayman ◽  
S. C. Bath

Abstract Milk is the main source of iodine in the UK; however, the consumption and popularity of plant-based milk-alternative drinks are increasing. Consumers may be at risk of iodine deficiency as, unless fortified, milk alternatives have a low iodine concentration. We therefore aimed to compare the iodine intake and status of milk-alternative consumers with that of cows’ milk consumers. We used data from the UK National Diet and Nutrition Survey from years 7 to 9 (2014–2017; before a few manufacturers fortified their milk-alternative drinks with iodine). Data from 4-d food diaries were used to identify consumers of milk-alternative drinks and cows’ milk, along with the estimation of their iodine intake (µg/d) (available for n 3976 adults and children ≥1·5 years). Iodine status was based on urinary iodine concentration (UIC, µg/l) from spot-urine samples (available for n 2845 adults and children ≥4 years). Milk-alternative drinks were consumed by 4·6 % (n 185; n 88 consumed these drinks exclusively). Iodine intake was significantly lower in exclusive consumers of milk alternatives than cows’ milk consumers (94 v. 129 µg/d; P < 0·001). Exclusive consumers of milk alternatives also had a lower median UIC than cows’ milk consumers (79 v. 132 µg/l; P < 0·001) and were classified as iodine deficient by the WHO criterion (median UIC < 100 µg/l), whereas cows’ milk consumers were iodine sufficient. These data show that consumers of unfortified milk-alternative drinks are at risk of iodine deficiency. As a greater number of people consume milk-alternative drinks, it is important that these products are fortified appropriately to provide a similar iodine content to that of cows’ milk.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Conte ◽  
Comina ◽  
Monti ◽  
Sidoti ◽  
Vannozzi ◽  
...  

Italy is considered a mildly iodine-deficient country. The aim of this study was to evaluate the iodine status of a cohort of adults living in Liguria after the 2005 salt iodization program. We searched all medical records of patients examined in two endocrine outpatient clinics in Genoa and Savona for data on urinary iodine. Subjects were under evaluation for thyroid diseases. Information on the type of salt used was found in few clinical records. Iodized salt use was reported in 29%, 20%, and 13% of records of people living in Genoa districts, the Savona district and nearby districts, respectively. The average urinary iodine concentration was 112.9 ± 62.3 µg/L (n = 415, median 101.0 µg/L). Non-significant differences (P > 0.05) were found between subjects with (median 103.5 µg/L) and without (median 97.5 µg/L) a thyroid gland, between the periods 2009–2013 (median 105.0 µg/L) and 2014–2018 (median 97.5 µg/L), and between Genoa (median 94.0 µg/L), Savona (median 105.0 µg/L) and the other districts (median 114.5 µg/L). No correlation with age, body mass index, creatinine, free thyroxine, thyroglobulin, levo-thyroxine dosage, or thyroid volume was observed. These data suggest a borderline status of iodine sufficiency in this cohort.


2003 ◽  
Vol 26 (5) ◽  
pp. 389-396 ◽  
Author(s):  
L. Brander ◽  
C. Als ◽  
H. Buess ◽  
F. Haldimann ◽  
M. Harder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document