scholarly journals Postural and Neurological Deficits in Broiler Chicks after Cervical Vaccination with Live Vaccine

2003 ◽  
Vol 15 (4) ◽  
pp. 361-364 ◽  
Author(s):  
C. R. Gustafson ◽  
G. L. Cooper ◽  
B. R. Charlton ◽  
A. A. Bickford ◽  
R. Nordhausen

A disease characterized by paresis and paralysis was seen in 7–9-day-old broiler chicks after vaccination in the neck area at day-of-age with a live virus vaccine containing viruses of Marek's disease, fowl pox, and infectious bursal disease. Affected birds presented with variable signs of ataxia, lateral recumbency, leg paralysis, and twisting or S-shaped flexure of the neck. Gross lesions noted at necropsy included swelling and edema of the subcutaneous tissues and muscles of the neck at the injection site area. A heavy mononuclear inflammatory cell infiltration was seen in the subcutaneous tissues, connective tissues, and muscles of the neck at the injection site. In some cases, the inflammatory process extended along fascial planes to involve the epidural spaces surrounding the spinal cord. Fatty changes with possible demyelination of nerve fibers were noted in some sections of the spinal cord adjacent to the inflammatory lesions. Clusters of poxviruses were found within some inflammatory lesions on transmission electron photomicrographs.

Author(s):  
Kathryn L. Lovell ◽  
Margaret Z. Jones

Caprine β-mannosidosis, an autosomal recessive defect of glycoprotein catabolism, is associated with a deficiency of tissue and plasma -mannosidase and with tissue accumulation and urinary excretion of oligosaccharides, including the trisaccharide Man(β1-4)GlcNAc(βl-4)GlcNAc and the disaccharide Man(β1-4)GlcNAc. This genetic disorder is evident at birth, with severe neurological deficits including a marked intention tremor, pendular nystagmus, ataxia and inability to stand. Major pathological characteristics described in Nubian goats in Michigan and in Anglo-Nubian goats in New South Wales include widespread cytoplasmic vacuolation in the nervous system and viscera, axonal spheroids, and severe myelin paucity in the brain but not spinal cord or peripheral nerves. Light microscopic examination revealed marked regional variation in the severity of central nervous system myelin deficits, with some brain areas showing nearly complete absence of myelin and other regions characterized by the presence of 25-50% of the control number of myelin sheaths.


2008 ◽  
Vol 13 (2) ◽  
pp. 6-8
Author(s):  
Lorne Direnfeld ◽  
Christopher R. Brigham ◽  
Elizabeth Genovese

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), does not provide a Diagnosis-based estimate of impairment due to syringomyelia, a disorder in which a cyst (syrinx), develops within the central spinal cord and destroys neural tissue as it expands. The AMA Guides, however, does provide an approach to rating a syringomyelia based on objective findings of neurological deficits identified during a neurological examination and demonstrated by standard diagnostic techniques. Syringomelia may occur after spinal cord trauma, including a contusion of the cord. A case study illustrates the rating process: The case patient is a 46-year-old male who fell backwards, landing on his upper back and head; over a five-year period he received a T5-6 laminectomy and later partial corpectomies of C5, C6, and C7, cervical discectomy C5-6 and C6-7; iliac crest strut graft fusion of C5-6 and C6-7; and anterior cervical plating of C5 to C7 for treatment of myelopathy; postoperatively, the patient developed dysphagia. The evaluating physician should determine which conditions are ratable, rate each of these components, and combine the resulting whole person impairments without omission or duplication of a ratable impairment. The article includes a pain disability questionnaire that can be used in conjunction with evaluations conducted according to Chapter 3, Pain, and Chapter 17, The Spine.


2021 ◽  
Vol 26 (1) ◽  
pp. 1-6
Author(s):  
Cheryl Corral

This article forms part of a series exploring the rehabilitation of the canine shoulder, elbow, back, hip and stifle following injury or disease. Discussed here are different rehabilitation techniques used to address neurological deficits, pain and weakness following spinal injury, including physical therapies, electrotherapies and acupuncture.


2020 ◽  
Vol 9 (4) ◽  
pp. 1221 ◽  
Author(s):  
Jacek M. Kwiecien ◽  
Liqiang Zhang ◽  
Jordan R. Yaron ◽  
Lauren N. Schutz ◽  
Christian J. Kwiecien-Delaney ◽  
...  

Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI.


1998 ◽  
Vol 88 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Yusuf Ersşahin ◽  
Saffet Mutluer ◽  
Sevgül Kocaman ◽  
Eren Demirtasş

Object. The authors reviewed and analyzed information on 74 patients with split spinal cord malformations (SSCMs) treated between January 1, 1980 and December 31, 1996 at their institution with the aim of defining and classifying the malformations according to the method of Pang, et al. Methods. Computerized tomography myelography was superior to other radiological tools in defining the type of SSCM. There were 46 girls (62%) and 28 boys (38%) ranging in age from less than 1 day to 12 years (mean 33.08 months). The mean age (43.2 months) of the patients who exhibited neurological deficits and orthopedic deformities was significantly older than those (8.2 months) without deficits (p = 0.003). Fifty-two patients had a single Type I and 18 patients a single Type II SSCM; four patients had composite SSCMs. Sixty-two patients had at least one associated spinal lesion that could lead to spinal cord tethering. After surgery, the majority of the patients remained stable and clinical improvement was observed in 18 patients. Conclusions. The classification of SSCMs proposed by Pang, et al., will eliminate the current chaos in terminology. In all SSCMs, either a rigid or a fibrous septum was found to transfix the spinal cord. There was at least one unrelated lesion that caused tethering of the spinal cord in 85% of the patients. The risk of neurological deficits resulting from SSCMs increases with the age of the patient; therefore, all patients should be surgically treated when diagnosed, especially before the development of orthopedic and neurological manifestations.


1991 ◽  
Vol 75 (6) ◽  
pp. 911-915 ◽  
Author(s):  
Thomas H. Milhorat ◽  
David E. Adler ◽  
Ian M. Heger ◽  
John I. Miller ◽  
Joanna R. Hollenberg-Sher

✓ The pathology of hematomyelia was examined in 35 rats following the stereotactic injection of 2 µl blood into the dorsal columns of the thoracic spinal cord. This experimental model produced a small ball-hemorrhage without associated neurological deficits or significant tissue injury. Histological sections of the whole spinal cord were studied at intervals ranging from 2 hours to 4 months after injection. In acute experiments (2 to 6 hours postinjection), blood was sometimes seen within the lumen of the central canal extending rostrally to the level of the fourth ventricle. Between 24 hours and 3 days, the parenchymal hematoma became consolidated and there was an intense proliferation of microglial cells at the perimeter of the lesion. The cells invaded the hematoma, infiltrated its core, and removed erythrocytes by phagocytosis. Rostral to the lesion, the lumen of the central canal was found to contain varying amounts of fibrin, proteinaceous material, and cellular debris for up to 15 days. These findings were much less prominent in the segments of the canal caudal to the lesion. Healing of the parenchymal hematoma was usually complete within 4 to 6 weeks except for residual hemosiderin-laden microglial cells and focal gliosis at the lesion site. It is concluded that the clearance of atraumatic hematomyelia probably involves two primary mechanisms: 1) phagocytosis of the focal hemorrhage by microglial cells; and 2) drainage of blood products in a rostral direction through the central canal of the spinal cord.


2015 ◽  
Vol 15 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Monica Salazar Davern ◽  
Sumeet Garg ◽  
Todd C. Hankinson

This report describes the presentation and operative treatment of a 3-year-old boy who survived a motor vehicle accident that resulted in a C6–7 distraction injury, complete avulsion of the spinal cord, and gross spinal instability. Only 5%–10% of all spinal cord and vertebral column injuries occur in children. Survival after such an injury is exceptionally rare in very young patients and is associated with severe neurological deficits. The authors discuss the substantial ethical challenges involved in the care of a patient with this injury. To their knowledge, only two other cases of survival have been reported in pediatric patients following motor vehicle trauma resulting in complete injury to the lower cervical spinal cord.


2021 ◽  
Vol 22 (13) ◽  
pp. 6845
Author(s):  
Rebecca L. Pratt

The buzz about hyaluronan (HA) is real. Whether found in face cream to increase water volume loss and viscoelasticity or injected into the knee to restore the properties of synovial fluid, the impact of HA can be recognized in many disciplines from dermatology to orthopedics. HA is the most abundant polysaccharide of the extracellular matrix of connective tissues. HA can impact cell behavior in specific ways by binding cellular HA receptors, which can influence signals that facilitate cell survival, proliferation, adhesion, as well as migration. Characteristics of HA, such as its abundance in a variety of tissues and its responsiveness to chemical, mechanical and hormonal modifications, has made HA an attractive molecule for a wide range of applications. Despite being discovered over 80 years ago, its properties within the world of fascia have only recently received attention. Our fascial system penetrates and envelopes all organs, muscles, bones and nerve fibers, providing the body with a functional structure and an environment that enables all bodily systems to operate in an integrated manner. Recognized interactions between cells and their HA-rich extracellular microenvironment support the importance of studying the relationship between HA and the body’s fascial system. From fasciacytes to chronic pain, this review aims to highlight the connections between HA and fascial health.


2017 ◽  
Vol 24 (2) ◽  
pp. 482-489 ◽  
Author(s):  
Jianzhong Hu ◽  
Ping Li ◽  
Xianzhen Yin ◽  
Tianding Wu ◽  
Yong Cao ◽  
...  

The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.


1995 ◽  
Vol 1 (1) ◽  
pp. 2-9 ◽  
Author(s):  
X Liu ◽  
D-L Yao ◽  
Hde F. Webster

Our goal was to test the effects of insulin-like growth factor I (IGF-I) treatment on clinical deficits, lesion number and lesion size in acute demyelinating experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats with an emulsion containing guinea pig spinal cord. In this EAE model, there is severe immune-mediated demyelination, which resembles that seen in actively demyelinating MS lesions. On day 12–13 after EAE induction, a total of 23 pairs of rats with the same mild degree of tail and hind limb weakness were given either intravenous IGF-I or placebo twice daily for 8 days. The daily IGF-I dose used in the first trial was 200 μg (about 0.6 mgkg-1) and in the second and third trials was 1 mg (about 3.0 mgkg-1). IGF-I treatment reduced permeability of the blood-spinal cord barrier to Evans blue-albumin. Maximum clinical deficit scores of IGF-I-treated rats were significantly lower and treated rats recovered faster than controls. IGF-I treatment produced significant reductions in weight loss and hind limb weakness. Treatment also improved treadmill walking, stride length and climbing performance. Morphometric analysis showed that spinal cord inflammatory lesions were significantly smaller and fewer in IGF-I-treated rots. The higher IGF-I dose produced a greater reduction in clinical and pathological deficits. We conclude that IGF-I treatment promotes clinical recovery by reducing EAE-induced blood-spinal cord barrier changes and the associated immune-mediated inflammatory lesions. Our results suggest that IGF-I may be useful in treating patients with multiple sclerosis and other demyelinating diseases.


Sign in / Sign up

Export Citation Format

Share Document