Influence of cross-linking agent on thermomechanical properties and shape memory effect of styrene shape memory polymer

2011 ◽  
Vol 22 (18) ◽  
pp. 2147-2154 ◽  
Author(s):  
Dawei Zhang ◽  
Yanju Liu ◽  
Kai Yu ◽  
Jinsong Leng

The influence of cross-linking agent content on thermomechanical properties and shape recovery behavior of thermoset styrene shape memory polymer (SMP) was investigated in this article. The SMP was polymerized by free radical reaction, with styrene and butyl acrylate as comonomers and divinylbenzene as the cross-linking agent. When the cross-linking agent content is increased from 1 to 4 wt%, the storage modulus and the glass transition temperature ( Tg) of the SMP increased correspondingly. During the glass transition, while the value of damping peak decreased as a result of the addition of the cross-linking agent, the peak width increased, and the main relaxation activation energy increased by 48.6%. When the active temperature was higher than or equal to Tg, the SMP samples containing different weight percentages of the cross-linking agent could recover their original shape. At or above Tg, SMP with varied fractions of cross-linking agent could completely recover its original shape; the recovery rate of SMP increased with the increase in the contents of the cross-linking agent. Below Tg, SMP could not recover its original shape, but the recovery angle increased as the contents of cross-linking agent increased. These results were attributed to the increase of cross-linking densities as a result of the addition of cross-linking agent.

Author(s):  
H Tobushi ◽  
D Shimada ◽  
S Hayashi ◽  
M Endo

The thermomechanical properties of polyurethane shape memory polymer (SMP) foams were investigated experimentally. The results obtained can be summarized as follows. (1) By cooling the foam after compressive deformation at high temperature, stress decreases and the deformed shape is fixed. Stress decreases markedly in the region of temperature below the glass transition temperature Ts during the cooling process. (2) By heating the shape-fixed foam under no load, the original shape is recovered. Strain is recovered markedly at the temperature region in the vicinity of Tg. (3) The ratio of shape fixity is 100 per cent and that of shape recovery 98 per cent. Neither ratio depends on the number of cycles. (4) Recovery stress increases by heating under constraint of the fixed shape. Recovery stress is about 80 per cent of the applied maximum stress. Relaxed stress at high temperature is not recovered. (5) The shape deformed at high temperature is maintained for six months under no load at Tg’60 K without depending on maximum strain, and the original shape is recovered by heating thereafter. (6) If the deformed shape is kept at high temperature, the original shape is not recovered. The factors influencing the shape irrecovery are the holding conditions of strain, temperature, and time.


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


2009 ◽  
Vol 6 (2) ◽  
pp. 189-205 ◽  
Author(s):  
Elzbieta A. Pieczyska ◽  
Wojciech K. Nowacki ◽  
Hisaaki Tobushi ◽  
Shunichi Hayashi

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


2013 ◽  
Vol 705 ◽  
pp. 169-172
Author(s):  
Xue Feng ◽  
Li Min Zhao ◽  
Xu Jun Mi

In order to develop high functionality of shape memory materials, the shape memory composites combined with TiNi wire and shape memory epoxy were prepared, and the mechanical and thermomechanical properties were studied. The results showed the addition of TiNi wire increased the Young modulus and breaking strength both at room temperature and at elevated temperature. The composites maintained the rates of shape fixity and shape recovery close to 100%. The maximum recovery stress increased with increasing TiNi wire volume fraction, and obtained almost 3 times of the matrix by adding 1vol% TiNi wire.


Sign in / Sign up

Export Citation Format

Share Document