Analyzing the effect of landmark vectors in homing navigation

2012 ◽  
Vol 20 (5) ◽  
pp. 337-359 ◽  
Author(s):  
Seung-Eun Yu ◽  
Changmin Lee ◽  
DaeEun Kim

The development of an autonomous navigating robot is a challenging task. Motivated by the performance of insects successfully returning to the nest, researchers have studied bio-inspired navigation algorithms for their potential use in mobile robots. In this paper, we analyze landmark-based approaches, especially Distance Estimated Landmark Vector (DELV), Average Correctional Vector and Average Landmark Vector methods, that use landmark vectors for visible environmental landmarks. We evaluated the homing performance of various landmark vector methods with surrounding landmarks under occlusion and found that the occluded or missing landmarks have a significant influence on the performance. We also developed a landmark vector algorithm with a visual compass that uses only retinal images without a reference compass. From our experimental results, we conclude that the DELV shows robust homing navigation performance with missing or occluded landmarks among landmark vector methods.

Author(s):  
Margot M. E. Neggers ◽  
Raymond H. Cuijpers ◽  
Peter A. M. Ruijten ◽  
Wijnand A. IJsselsteijn

AbstractAutonomous mobile robots that operate in environments with people are expected to be able to deal with human proxemics and social distances. Previous research investigated how robots can approach persons or how to implement human-aware navigation algorithms. However, experimental research on how robots can avoid a person in a comfortable way is largely missing. The aim of the current work is to experimentally determine the shape and size of personal space of a human passed by a robot. In two studies, both a humanoid as well as a non-humanoid robot were used to pass a person at different sides and distances, after which they were asked to rate their perceived comfort. As expected, perceived comfort increases with distance. However, the shape was not circular: passing at the back of a person is more uncomfortable compared to passing at the front, especially in the case of the humanoid robot. These results give us more insight into the shape and size of personal space in human–robot interaction. Furthermore, they can serve as necessary input to human-aware navigation algorithms for autonomous mobile robots in which human comfort is traded off with efficiency goals.


2011 ◽  
Vol 415-417 ◽  
pp. 1703-1707
Author(s):  
Jun Min Chen ◽  
Xiao Lin Yao

Abstract. In order to investigate the optimal thickness of infiltration media in the Constructed Rapid Infiltration System, the artificial soil column is used to simulate the Constructed Rapid Infiltration System, and the CODCr, NH3-N and TN concentrations of the effluent from all the sampling sites are monitored. The experimental results and analysis show that the thickness of infiltration media exerts a significant influence on the CODCr, NH3-N and TN concentration and removal efficiency of the effluent; the CODCr, NH3-N and TN are mainly removed in the 0-1800mm zone of the artificial soil column; the total CODCr removal efficiency increases, as the thickness of infiltration media increases, but the CODCr removal efficiency in the 1800-2200mm zone is very low; the NH3-N and TN removal efficiency reaches the maximum where the thickness of infiltration media is 1800mm; the NH3-N and TN concentration of the effluent from 1800-2200mm zone dose not decrease, but increase 5-8%, due to the assimilation denitrification and amemoniation reaction on the end of the anaerobic zone; in consideration of the effluent quality, efficient biodegradation zone, construction investment, etc. the optimal thickness of infiltration media in CRI system should be 1800mm.


2014 ◽  
Vol 511-512 ◽  
pp. 101-104 ◽  
Author(s):  
Yang Xue ◽  
Jun Tao Yang ◽  
Ya Ling Dong ◽  
Jia Li Shen ◽  
Ru Peng ◽  
...  

This paper presents a new approach for obstacle avoidance of small mobile robots, which combine the position sensitive detector (PSD) with digital compass. It is important for an autonomous robot to explore its surroundings in performing the task of localization and navigation for searching. Because of the complexity of the environment, one simple kind of sensors is not sufficient for robot to accomplish these tasks. In this paper, the small mobile robots are enabled to identify barriers and distinguish surroundings by using the angle signal from the digital compass which is generally mounted on the robot. Experimental results indicate that this approach based on digital compass shows great potential in autonomous robot obstacle avoidance.


2009 ◽  
Vol 50 ◽  
Author(s):  
Ramutis Bansevičius ◽  
Asta Drukteinienė ◽  
Genadijus Kulvietis

This paper presents analysis of trajectory planningmethods for mobile robots and new trajectory planning method research for mobile piezorobots. Here are deduced motional simultaneous equations for this kind of robots that describe point-to-pointmotion by given function. Preliminary experimental results prove the feasibility of proposed mathematical model.


2019 ◽  
pp. 1192-1219
Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.


Author(s):  
Andrea Usai ◽  
Paolo Di Giamberardino

In this chapter, we describe a homography approach to vision based feedback for nonholonomic mobile robots control. Differently than other approaches based on homography or fundamental matrix, our method has been developed to be robust to reference features loss, during the robot movement. This allows us to implement an arbitrary control law without the need of a teach-by-showing stage. In the chapter, the use of a stereo camera system to improve the observer accuracy and to perform an auto-calibration of the stereo-head pose is investigated. Experimental results are provided to show the performances of the proposed system state estimation, using an eye-in-hand mobile robotic platform.


2020 ◽  
Vol 67 (8) ◽  
pp. 6679-6687 ◽  
Author(s):  
Ernesto Fabregas ◽  
Gonzalo Farias ◽  
Ernesto Aranda-Escolastico ◽  
Gonzalo Garcia ◽  
Dictino Chaos ◽  
...  

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 23-31
Author(s):  
Shouyun Zhang ◽  
Jinghong Ma

AbstractIn this paper, the unsaturated hydrogen bonds (H-bonds) of the bio-based polyamide 56 (PA56) with an odd-even unit structure were analyzed by infrared spectroscopy. It was proved that the bio-based PA56 had less saturated H-bonds, which became attenuated and blue-shifted at the temperature exceeding 260°C. Besides, as H-bond was decayed and broken, new unsaturated H-bonds readily formed. Moreover, the experimental results obtained strongly indicate that the unsaturated H-bonds of bio-based polyamide 56 could react with polar metal oxides. Besides, the intercalation of montmorillonite was found to have a significant influence on the hydrogen bond between polymer chains.


2013 ◽  
Vol 347-350 ◽  
pp. 808-811
Author(s):  
Jia Lu Li ◽  
Lin Bing Long ◽  
Bao Feng Zhang

Localization is the basis for navigation of mobile robots. This paper focuses on key techniques of localization for mobile robots based on vision. Firstly, the specific measures and steps of the algorithm are analyzed and researched in depth. In the study, SIFT algorithm combined with epipolar geometry constraint is used on the environment feature point detection, matching and tracking. And the method of RANSAC combined with the least squares is used to obtain accurate results of the motion estimation. Then the necessary experiments are carried out to verify the correctness and effectiveness of algorithms. The experimental results verified the accuracy of the improved algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 298 ◽  
Author(s):  
Jyun-Yu Jhang ◽  
Cheng-Jian Lin ◽  
Kuu-Young Young

This study provides an effective cooperative carrying and navigation control method for mobile robots in an unknown environment. The manager mode switches between two behavioral control modes—wall-following mode (WFM) and toward-goal mode (TGM)—based on the relationship between the mobile robot and the unknown environment. An interval type-2 fuzzy neural controller (IT2FNC) based on a dynamic group differential evolution (DGDE) is proposed to realize the carrying control and WFM control for mobile robots. The proposed DGDE uses a hybrid method that involves a group concept and an improved differential evolution to overcome the drawbacks of the traditional differential evolution algorithm. A reinforcement learning strategy was adopted to develop an adaptive WFM control and achieve cooperative carrying control for mobile robots. The experimental results demonstrated that the proposed DGDE is superior to other algorithms at using WFM control. Moreover, the experimental results demonstrate that the proposed method can complete the task of cooperative carrying, and can realize navigation control to enable the robot to reach the target location.


Sign in / Sign up

Export Citation Format

Share Document