Dynamical Behaviour of Orthotropic Micropolar Elastic Medium

2002 ◽  
Vol 8 (8) ◽  
pp. 1053-1069 ◽  
Author(s):  
Rajneesh Kumar ◽  
Suman Choudhary

The present paper is concerned with the plane strain problem in homogeneous micropolar orthotropic elastic solids. The disturbance due to continuous normal and tangential sources are investigated by employing eigenvalue approach. The integral transforms have been inverted by using a numerical technique to obtain the normal displacement, normal force stress and tangential couple stress in the physical domain. The expressions of these quantities are given and illustrated graphically.

2005 ◽  
Vol 12 (2) ◽  
pp. 261-272
Author(s):  
Rajneesh Kumar ◽  
Suman Choudhary

Abstract The present study is concerned with the plane strain problem in homogeneous orthotropic micropolar viscoelastic solid. The disturbance due to the time harmonic concentrated source is investigated by employing the eigenvalue approach. Integral transforms have been inverted by a numerical technique to obtain the components of displacement, force stress and couple stress in the physical domain. The results obtained are given and illustrated graphically.


2014 ◽  
Vol 19 (2) ◽  
pp. 347-363
Author(s):  
R. Singh ◽  
V. Kumar

Abstract The eigen value approach, following the Laplace and Hankel transformation has been employed to find a general solution of the field equations in a generalized thermo microstretch elastic medium for an axisymmetric problem. An infinite space with the mechanical source has been applied to illustrate the utility of the approach. The integral transformations have been inverted by using a numerical inversion technique to obtain normal displacement, normal force stress, couple stress and microstress in the physical domain. Numerical results are shown graphically


2013 ◽  
Vol 18 (4) ◽  
pp. 1249-1261
Author(s):  
R. Singh

Abstract The second axisymmetric problem in a micropolar elastic medium has been investigated by employing an eigen value approach after applying the Laplace and the Hankel transforms. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms have been inversed by using a numerical technique to obtain the components of microrotation, displacement, force stress and couple stress in the physical domain. The results for these quantities are given and illustratred graphically.


2013 ◽  
Vol 18 (2) ◽  
pp. 521-536
Author(s):  
R. Singh ◽  
K. Singh

The eigen value approach, following the Laplace and Hankel transformation has been employed to find a general solution of the field equations in a micropolar elastic medium with voids for an axisymmetric problem. An infinite space with the mechanical source has been applied to illustrate the utility of the approach. The integral transformations has been inverted by using a numerical inversion technique to get the result in physical domain. The results in the form of normal displacement, volume fraction, normal force stress, tangential force stress and tangential couple stress components have been obtained numerically and illustrated graphically.


2015 ◽  
Vol 20 (3) ◽  
pp. 487-502
Author(s):  
V. Kumar ◽  
R. Singh

Abstract A two dimensional Cartesian model of a generalized thermo-microstretch elastic solid subjected to impulsive force has been studied. The eigen value approach is employed after applying the Laplace and Fourier transforms on the field equations for L-S and G-L model of the plain strain problem. The integral transforms have been inverted into physical domain numerically and components of normal displacement, normal force stress, couple stress and microstress have been illustrated graphically.


2017 ◽  
Vol 44 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Praveen Ailawalia ◽  
Sunil Sachdeva ◽  
Devinder Pathania

A two-dimensional problem in an infinite microstretch thermoelastic solid with microtemperatures subjected to a mechanical source is studied. The medium is rotating with a uniform angular velocity ??. The normal mode analysis is used to obtain the exact expressions for the component of normal displacement, microtemperature, normal force stress, microstress tensor, temperature distribution, heat flux moment tensor and tangential couple stress. The effect of microrotation and stretch on the considered variables are illustrated graphically.


2017 ◽  
Vol 22 (1) ◽  
pp. 5-23 ◽  
Author(s):  
P. Ailawalia ◽  
S.K. Sachdeva ◽  
D. Pathania

AbstractThe purpose of this paper is to study the two dimensional deformation in a thermoelastic micropolar solid with cubic symmetry. A mechanical force is applied along the interface of a thermoelastic micropolar solid with cubic symmetry (Medium I) and a thermoelastic solid with microtemperatures (Medium II). The normal mode analysis has been applied to obtain the exact expressions for components of normal displacement, temperature distribution, normal force stress and tangential coupled stress for a thermoelastic micropolar solid with cubic symmetry. The effects of anisotropy, micropolarity and thermoelasticity on the above components have been depicted graphically.


Author(s):  
I. I. Kudish

A number of experimental studies [1–3] revealed that the normal displacement in a contact of rough surfaces due to asperities presence is a nonlinear function of local pressure and it can be approximated by a power function of pressure. Originally, a linear mathematical model accounting for surface roughness of elastic solids in contact was introduced by I. Shtaerman [4]. He assumed that the effect of asperities present in a contact of elastic solids can be essentially replaced by the presence of a thin coating simulated by an additional normal displacement of solids’ surfaces proportional to a local pressure. Later, a similar but nonlinear problem formulation that accounted for the above mentioned experimental fact was proposed by L. Galin. In a series of papers this problem was studied by numerical and asymptotic methods [5–9]. The present paper has a dual purpose: to analyze the problem analytically and to provide some asymptotic and numerical solutions. The results presented below provide an overview of the results obtained on the topic and published by the author earlier in the journals hardly accessible to the international tribological community (such as Russian and mathematical journals) and, therefore, mostly unknown by tribologists. A number of recent publications on contacts of rough elastic solids supports the view that these results are still of value to the specialists involved in nanotribology. The existence and uniqueness of a solution of a contact problem for elastic bodies with rough (coated) surfaces is established based on the variational inequalities approach. Four different equivalent formulations of the problem including three variational ones were considered. A comparative analysis of solutions of the contact problem for different values of initial parameters (such as the indenter shape, parameters characterizing roughness, elastic parameters of the substrate material) is done with the help of calculus of variations and the Zaremba-Giraud principle of maximum for harmonic functions [10,11]. The results include the relations between the pressure and displacement distributions for rough and smooth solids as well as the relationships for solutions of the problems for rough solids with fixed and free contact boundaries. For plane and axially symmetric cases some asymptotic and numerical solutions are presented.


Sign in / Sign up

Export Citation Format

Share Document