Structural-acoustic coupling study of tyre-cavity resonance

2014 ◽  
Vol 22 (2) ◽  
pp. 513-529 ◽  
Author(s):  
Zamri Mohamed ◽  
Xu Wang ◽  
Reza Jazar
Author(s):  
Ralf Lucklum ◽  
Mikhail Zubtsov ◽  
Simon Villa Arango

We report on first steps towards a phononic crystal sensor for biomedical applications. Phononic crystals and metamaterials allow for unprecedented control of sound propagation. The classical ultrasonic sensors, acoustic microsensors and MEMS resonator sensors face severe limitations when applying them to small volume liquid analytes. Phononic crystal sensors are a new concept following the route of photonic crystal sensors. Basically, the material of interest, here a liquid analyte confined in a cavity of a phononic crystal having a solid matrix constitutes one component of the phononic crystal. In an application as chemical sensor the value of interest, let’s say the concentration of a toxic compound in liquid, is related to acoustic properties of the liquid in the cavity. A change in the concentration causes measurable changes in the properties of the phononic crystal. Transmission or reflection coefficients are appropriate parameters for measurement. Specifically, a resonance induced well separated transmission peak within the band gap is the most favorable feature. The sensor scheme therefore relies on the determination of the frequency of maximum transmission as measure of concentration. Promising applications like biomedical sensors, point-of-care diagnostics or fast screening introduce further engineering challenges, specifically when considering a disposable element containing the analyte. The three key challenges are the strong restriction coming from limitations to approved materials for the analyte container, geometric dimensions in the mm-range common in hospital or point-of-care environment and acoustic coupling between sensor platform and analyte container.


2017 ◽  
Vol 95 (10) ◽  
pp. 894-899
Author(s):  
Mouhammad El Hassan ◽  
Laurent Keirsbulck

Passive control of the flow over a deep cavity at low subsonic velocity is considered in the present paper. The cavity length-to-depth aspect ratio is L/H = 0.2. particle image velocimetry (PIV) measurements characterized the flow over the cavity and show the influence of the control method on the cavity shear layer development. It is found that both the “cylinder” and the “shaped cylinder”, placed upstream from the cavity leading edge, result in the suppression of the aero-acoustic coupling and highly reduce the cavity noise. It should be noted that the vortical structures impinge at almost the same location near the cavity downstream corner with and without passive control. The present study allows to identify an innovative passive flow control method of cavity resonance. Indeed, the use of a “shaped cylinder” presents similar suppression of the cavity resonance as with the “cylinder” but with less impact on the cavity flow. The “shaped cylinder” results in a smaller shear layer growth than the cylinder. Velocity deficiency and turbulence levels are less pronounced using the “shaped cylinder”. The “cylinder” tends to diffuse the vorticity in the cavity shear layer and thus the location of the maximum vorticity is more affected as compared to the “shaped cylinder” control. The fact that the “shaped cylinder” is capable of suppressing the cavity resonance, despite the vortex shedding and the high frequency forcing being suppressed, is of high interest from fundamental and applied points of view.


1995 ◽  
Vol 23 (1) ◽  
pp. 2-10 ◽  
Author(s):  
J. K. Thompson

Abstract Vehicle interior noise is the result of numerous sources of excitation. One source involving tire pavement interaction is the tire air cavity resonance and the forcing it provides to the vehicle spindle: This paper applies fundamental principles combined with experimental verification to describe the tire cavity resonance. A closed form solution is developed to predict the resonance frequencies from geometric data. Tire test results are used to examine the accuracy of predictions of undeflected and deflected tire resonances. Errors in predicted and actual frequencies are shown to be less than 2%. The nature of the forcing this resonance as it applies to the vehicle spindle is also examined.


2021 ◽  
Vol 11 (9) ◽  
pp. 3979
Author(s):  
Wei Zhao ◽  
Yuting Liu ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Xiaojun Hu

As a kind of low-frequency vehicle interior noise, tire acoustic cavity resonance noise plays an important role, since the other noise (e.g., engine noise, wind noise and friction noise) has been largely suppressed. For the suspension system, wheels stand first in the propagation path of this energy. Therefore, it is of great significance to study the influence of wheel design on the transmission characteristics of this vibration energy. However, currently the related research has not received enough attention. In this paper, two sizes of aluminum alloy wheel finite element models are constructed, and their modal characteristics are analyzed and verified by experimental tests simultaneously. A mathematically fitting sound pressure load model arising from the tire acoustic cavity resonance acting on the rim is first put forward. Then, the power flow method is applied to investigate the resonance energy distribution and transmission characteristics in the wheels. The structure intensity distribution and energy transmission efficiency can be described and analyzed clearly. Furthermore, the effects of material structure damping and the wheel spoke number on the energy transmission are also discussed.


2020 ◽  
Vol 75 (12) ◽  
pp. 1077-1084
Author(s):  
Bhawan Jyoti ◽  
Shakti Pratap Singh ◽  
Mohit Gupta ◽  
Sudhanshu Tripathi ◽  
Devraj Singh ◽  
...  

AbstractThe elastic, thermal and ultrasonic properties of zirconium nanowire (Zr-NW) have been investigated at room temperature. The second and third order elastic constants (SOECs and TOECs) of Zr-NW have been figured out using the Lennard–Jones Potential model. SOECs have been used to find out the Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, Pugh’s ratio, Zener anisotropic factor and ultrasonic velocities. Further these associated parameters of Zr-NW have been utilized for the evaluation of the Grüneisen parameters, thermal conductivity, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. On the basis of the above analyzed properties of Zr-NW, some characteristics features of the chosen nanowire connected with ultrasonic and thermo-physical parameters have been discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ramanshu P. Singh ◽  
Shakti Yadav ◽  
Giridhar Mishra ◽  
Devraj Singh

Abstract The elastic and ultrasonic properties have been evaluated at room temperature between the pressure 0.6 and 10.4 GPa for hexagonal closed packed (hcp) hafnium (Hf) metal. The Lennard-Jones potential model has been used to compute the second and third order elastic constants for Hf. The elastic constants have been utilized to calculate the mechanical constants such as Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, and Zener anisotropy factor for finding the stability and durability of hcp hafnium metal within the chosen pressure range. The second order elastic constants were also used to compute the ultrasonic velocities along unique axis at different angles for the given pressure range. Further thermophysical properties such as specific heat per unit volume and energy density have been estimated at different pressures. Additionally, ultrasonic Grüneisen parameters and acoustic coupling constants have been found out at room temperature. Finally, the ultrasonic attenuation due to phonon–phonon interaction and thermoelastic mechanisms has been investigated for the chosen hafnium metal. The obtained results have been discussed in correlation with available findings for similar types of hcp metals.


Sign in / Sign up

Export Citation Format

Share Document