Nonlinear argumental oscillators: A few examples of modulation via spatial position

2016 ◽  
Vol 23 (18) ◽  
pp. 2888-2911 ◽  
Author(s):  
Daniel Cintra ◽  
Pierre Argoul

Under certain conditions, an oscillator can enter a stable regime when submitted to an external harmonic force whose frequency is far from the natural frequency of the oscillator. This may happen when the external force acts on the oscillator in a way which depends on the oscillator's spatial position. This phenomenon is called “argumental oscillation”. In this paper, six argumental oscillators are described and modeled, and experimental results are given and compared to numerical simulations based on the models. A polar Van der Pol representation, with embedded time indications, is used to allow a precise comparison. The pendulums are modeled as Duffing oscillators. The six models are based on various pendulums excited by spatially localized magnetic-field sources consisting of wire coils. Each pendulum receives the excitation via a steel element, or a permanent magnet, fitted at the tip of the pendulum's rod. The spatial localization induces another nonlinearity besides the Duffing nonlinearity. A control system allowing a real-time Van der Pol representation of the motion is presented. Attractors are brought out from experimental results.

Author(s):  
Sangchae Kim ◽  
Bharath Bethala ◽  
Simone Ghirlanda ◽  
Senthil N. Sambandam ◽  
Shekhar Bhansali

Magnetocaloric refrigeration is increasingly being explored as an alternative technology for cooling. This paper presents the design and fabrication of a micromachined magnetocaloric cooler. The cooler consists of fluidic microchannels (in a Si wafer), diffused temperature sensors, and a Gd5(Si2Ge2) magnetocaloric refrigeration element. A magnetic field of 1.5 T is applied using an electromagnet to change the entropy of the magnetocaloric element for different ambient temperature conditions ranging from 258 K to 280 K, and the results are discussed. The tests show a maximum temperature change of 7 K on the magnetocaloric element at 258 K. The experimental results co-relate well with the entropy change of the material.


2013 ◽  
Vol 312 ◽  
pp. 402-405
Author(s):  
Yang Yong ◽  
Dong Sun ◽  
Jie Ji

The fatigue tests on 15CrMo steel specimen were carried out and the metal magnetic memory (MMM) signals were detected. The experiment shows that the magnetic signals of specimen contain the information of stress distribution in the material inside. Furthermore, the experimental results show that the magnetic signals increase initial while then decrease slightly with the stress increase from 0kN to 200kN. Though analysis the MMM signals induced by different tensile stress within the plastic region of the specimen, a simple model was derived. The experimental results are consistent with the calculated results based on the Jiles-Atherton model.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2018 ◽  
Vol 19 (10) ◽  
pp. 3045 ◽  
Author(s):  
Takehito Kikuchi ◽  
Yusuke Kobayashi ◽  
Mika Kawai ◽  
Tetsu Mitsumata

Magnetorheological elastomers (MREs) are stimulus-responsive soft materials that consist of polymeric matrices and magnetic particles. In this study, large-strain response of MREs with 5 vol % of carbonyl iron (CI) particles is experimentally characterized for two different conditions: (1) shear deformation in a uniform magnetic field; and (2), compression in a heterogeneous uniaxial magnetic field. For condition (1), dynamic viscoelastic measurements were performed using a rheometer with a rotor disc and an electric magnet that generated a uniform magnetic field on disc-like material samples. For condition (2), on the other hand, three permanent magnets with different surface flux densities were used to generate a heterogeneous uniaxial magnetic field under cylindrical material samples. The experimental results were mathematically modeled, and the relationship between them was investigated. We also used finite-element method (FEM) software to estimate the uniaxial distributions of the magnetic field in the analyzed MREs for condition (2), and developed mathematical models to describe these phenomena. By using these practicable techniques, we established a simple macroscale model of the elastic properties of MREs under simple compression. We estimated the elastic properties of MREs in the small-strain regime (neo–Hookean model) and in the large-strain regime (Mooney–Rivlin model). The small-strain model explains the experimental results for strains under 5%. On the other hand, the large-strain model explains the experimental results for strains above 10%.


2009 ◽  
Vol 152-153 ◽  
pp. 394-396 ◽  
Author(s):  
Sergey I. Tarapov ◽  
M. Khodzitskiy ◽  
S.V. Chernovtsev ◽  
D. Belosorov ◽  
A.M. Merzlikin ◽  
...  

The mmW band photonic Tamm states in 1D magnetophotonic crystals are studied. It is shown the possibility to manipulate the eigenfrequencies of such states by an external magnetic field. Our experimental results are in a good agreement with theoretical prediction.


1991 ◽  
Vol 231 ◽  
Author(s):  
P. Bruno

AbstractTheoretical investigations of the magnetization and Curie temperature of ferromagnetic ultrathin films in the presence of magnetic anisotropy and long-range dipolar interactions are presented. The Curie temperature of fcc (001) cobalt ultrathin films is calculated and compared with experimental results on Co/Cu (001) films. The influence of an external magnetic field, and the surface gradient of the magnetization are also discussed.


2005 ◽  
Vol 36 (5) ◽  
pp. 360-374 ◽  
Author(s):  
E. E. Tzirtzilakis ◽  
V. C. Loukopoulos

Author(s):  
Qingwen Dai ◽  
Wei Huang ◽  
Jingqiu Wang ◽  
Xiaolei Wang

The thermal capillary migration describes a phenomenon where the thermal gradients on the surface drive a liquid to flow from warm to cold regions in the absence of external forces. In industry, it is of great importance to prevent the migration since it would lead to lubricant starvation on the moving components. In this paper, ferrofluids are employed to control the migration. The influence of external magnetic field on the migration of ferrofluids is studied. The effects of volume and saturation magnetization of ferrofluids are also investigated. Experimental results demonstrate that the external magnetic field intensities have a significant obstruction effect on the migration behavior. An effective method using electromagnet to control the migration and re-concentrate the migrated lubricant is proposed.


Sign in / Sign up

Export Citation Format

Share Document