A beam with arbitrarily placed lateral dampers: Evolution of complex modes with damping

2016 ◽  
Vol 24 (2) ◽  
pp. 379-392 ◽  
Author(s):  
Y Chen ◽  
DM McFarland ◽  
BF Spencer ◽  
LA Bergman

Free vibration of a beam with multiple arbitrarily placed lateral viscous dampers is investigated to gain insight into the intrinsic dynamic features of non-proportional damped systems. In terms of virtual boundary condition method, complex modes of a damper-beam system are achieved, and the solution is also suitable for the beams that have different boundary conditions. The features of the wave numbers satisfying the frequency equation were discussed in theory. The orthogonality analysis conducted in this paper provides two orthogonality conditions for complex modes. Pseudoundamped natural frequencies, damping ratios and complex modes are surveyed via numerical study. The analysis on the evolution of complex modes shows that the increasing damping would lead to over damped modes, and the mode shape that corresponds to the small one of a pair of real-valued natural frequencies is close to the static deformation shape of a beam subjected to static forces located at the positions of the dampers. For the rest modes that would never be over damped with increasing damping, the mode shapes and corresponding psuedoundamped natural frequencies will converge to that of a beam with rolling supports located at where dampers are placed. The exact solution of free vibration of a multiple-span beam is presented in addition.

1999 ◽  
Vol 67 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Y. Narita

The free-vibration behavior of rectangular plates constitutes an important field in applied mechanics, and the natural frequencies are known to be primarily affected by the boundary conditions as well as aspect and thickness ratios. Any one of the three classical edge conditions, i.e., free, simply supported, and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations the present paper introduces the Polya counting theory in combinatorial mathematics. Formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three classical edge conditions and is used to numerically verify the numbers. In this numerical study the number of combinations in the free-vibration behavior is determined for some plate models by using the derived formulas. Results are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the modified Ritz method. [S0021-8936(00)02203-0]


1985 ◽  
Vol 52 (4) ◽  
pp. 890-896 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
Y. Muramoto

An analysis is presented for the free vibration of an elastically or a rigidly point-supported spherical shell. For this purpose, the deflection displacements of the shell are written in a series of the products of the associated Legendre functions and the trigonometric functions. The dynamical energies of the shell are evaluated, and the frequency equation is derived by the Ritz method. For a rigidly point-supported shell, the Lagrangian multiplier method is conveniently employed. The method is applied to a closed spherical shell supported at equispaced four points located along a parallel of latitude; the natural frequencies and the mode shapes are calculated numerically, and the effects of the point supports on the vibration are studied.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


2012 ◽  
Vol 12 (02) ◽  
pp. 377-394 ◽  
Author(s):  
J. MOHANTY ◽  
S. K. SAHU ◽  
P. K. PARHI

This paper presents a combined experimental and numerical study of free vibration of industry-driven woven fiber glass/epoxy (G/E) composite plates with delamination. Using the first-order shear deformation theory, an eight-noded two-dimensional quadratic isoparametric element was developed, which has five degrees of freedom per node. In the experimental study, the influence of various parameters such as the delamination size, boundary conditions, fiber orientations, number of layers, and aspect ratio on the natural frequencies of delaminated composite plates are investigated. Comparison of the numerical results with experimental ones shows good agreement. Fundamental natural frequencies are found to decrease with the increase in the delamination size and fiber orientation and increases with the increase in the number of layers and aspect ratio of delaminated composite plates. The natural frequency of the delaminated composite plate varies significantly for different boundary conditions.


Author(s):  
Shyh-Chin Huang ◽  
Chen-Kai Su

Abstract The frequencies and mode shapes of rolling rings with radial and circumferential displacement constraints are investigated. The displacement constraints practically come from the point contact, e.g., rolling tire on the road, or other applications. The proposed approach to analysis is calculating the natural frequencies and modes of a non-contacted spinning ring, then employing the receptance method for displacement constraints. The frequency equation for the constrained system is hence obtained, and it can be solved numerically or graphically. The receptance matrix developed for the spinning ring is surprisingly found not symmetric as usual. Moreover, the cross receptances are discovered to form complex conjugate pairs. That is a feature that has never been described in literature. The results show that the natural frequencies for the spinning ring in contact, as expected, higher than those for the non-contacted ring. The variance of frequencies to rotational speeds are then illustrated. The analytic forms of mode shapes are also derived and sketched. The traveling modes are then shown for cases.


2017 ◽  
Vol 24 (19) ◽  
pp. 4465-4483 ◽  
Author(s):  
Mohsen Amjadian ◽  
Anil K Agrawal

Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved bridges that would be of interest to bridge engineers for the estimation of the seismic response of these types of bridges. For this purpose, a simple three-degree-of-freedom (3DOF) dynamic model for free vibration equation of this type of bridge has been developed. It is shown that the translational motion of the deck of horizontally curved bridges in the direction that is perpendicular to their axis of symmetry is always coupled with the rotational motion of the deck, regardless of the location of the stiffness center. The model is further exploited to develop closed-form formulas for the estimation of the maximum displacements of the corners of the deck of one-way asymmetric horizontally curved bridges. The accuracy of the model is verified by finite-element model of a horizontally curved bridge prototype in OpenSEES. Finally, the model is utilized to study the influence of the location of the stiffness center with respect to the deck curvature center on the natural frequency and the maximum displacements of the corners of the deck for different curvatures of the deck. The results of free vibration analysis show that the natural frequencies of one-way asymmetric horizontally curved bridges, in general, increase with the increase of the subtended angle of the deck. The results of earthquake response spectrum analysis show that the increase in the subtended angle of one-way asymmetric horizontally curved bridges decreases the radial displacements of the corners of the deck but increases the azimuthal displacement. These two responses both increase with the increase in the distance between the stiffness center and the curvature center.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


2021 ◽  
Vol 11 (21) ◽  
pp. 10485
Author(s):  
Hao Yu ◽  
Feng Liang ◽  
Yu Qian ◽  
Jun-Jie Gong ◽  
Yao Chen ◽  
...  

Phononic crystals (PCs) are a novel class of artificial periodic structure, and their band gap (BG) attributes provide a new technical approach for vibration reduction in piping systems. In this paper, the vibration suppression performance and natural properties of fluid-conveying pipes with periodically varying cross-section are investigated. The flexural wave equation of substructure pipes is established based on the classical beam model and traveling wave property. The spectral element method (SEM) is developed for semi-analytical solutions, the accuracy of which is confirmed by comparison with the available literature and the widely used transfer matrix method (TMM). The BG distribution and frequency response of the periodic pipe are attained, and the natural frequencies and mode shapes are also obtained. The effects of some critical parameters are discussed. It is revealed that the BG of the present pipe system is fundamentally induced by the geometrical difference of the substructure cross-section, and it is also related to the substructure length and fluid–structure interaction (FSI). The number of cells does not contribute to the BG region, while it has significant effects on the amplitude attenuation, higher order natural frequencies and mode shapes. The impact of FSI is more evident for the pipes with smaller numbers of cells. Moreover, compared with the conventional TMM, the present SEM is demonstrated more effective for comprehensive analysis of BG characteristics and free vibration of PC dynamical structures.


2016 ◽  
Vol 54 (6) ◽  
pp. 785 ◽  
Author(s):  
Nguyen Tien Khiem ◽  
Nguyen Ngoc Huyen

Free vibration of FGM Timoshenko beam is investigated on the base of the power law distribution of FGM. Taking into account the actual position of neutral plane enables to obtain general condition for uncoupling of axial and flexural vibrations in FGM beam. This condition defines a class of functionally graded beams for which axial and flexural vibrations are completely uncoupled likely to the homogeneous beams. Natural frequencies and mode shapes of uncoupled flexural vibration of beams from the class are examined in dependence on material parameters and slendernes


Sign in / Sign up

Export Citation Format

Share Document