Numerical modeling and experimental study on a novel pounding tuned mass damper

2017 ◽  
Vol 24 (17) ◽  
pp. 4023-4036 ◽  
Author(s):  
Wenxi Wang ◽  
Xugang Hua ◽  
Xiuyong Wang ◽  
Zhengqing Chen ◽  
Gangbing Song

Owing to its easy implementation and robustness, the pounding tuned mass damper (PTMD), which uses viscoelastic materials to cover the pounding boundary to increase the energy dissipation during impact, has been studied in recent years. The conventional PTMD design includes a gap between the pounding mass and the viscoelastic material; the value of this gap should be optimized. In this paper, a novel PTMD is proposed to control structural vibrations. In the proposed PTMD, the pounding boundary covered by viscoelastic materials is simply added to one side of the tuned mass when the tuned mass is in the equilibrium position. Unlike the conventional PTMD, the gap between the tuned mass and the pounding boundary is zero in the proposed design and is no longer a design parameter. A new analytic model is proposed to accurately predict the impact force between viscoelastic materials and steel. Through comparison with the impact force and the indentation from impact experiments, the accuracy of the proposed impact force model is validated. To verify the control performance of the proposed PTMD, an experimental study on a frame with the proposed PTMD is carried out to investigate the control performance in free vibration and forced vibration cases. Both experimental and numerical results show that the proposed PTMD can effectively reduce the response of the frame structure and that the damping ratio of the frame is significantly increased.

2021 ◽  
Vol 8 ◽  
Author(s):  
Dehui Ye ◽  
Jie Tan ◽  
Yabin Liang ◽  
Qian Feng

The pounding tuned mass damper (PTMD) is a novel passive damper that absorbs and dissipates energy by an auxiliary tuned spring-mass system. Viscoelastic materials are attached to the interface of the limitation collar in the PTMD so that the energy dissipation capacity can be enhanced. Previous studies have successfully demonstrated the effectiveness of PTMD at room temperature. However, in practice, the PTMD may face a broad temperature range, which can affect the mechanical properties of the viscoelastic materials. Thus, the study of vibration control effectiveness of PTMD at different temperatures is of great significance for its practical engineering application. In this paper, a series of experiments were conducted to investigate the performance of a PTMD in a temperature-controlled environment. A PTMD device was designed to suppress the vibration of a portal frame structure and tested across environmental temperatures ranging from –20°C to 45°C. The displacement reduction ratios demonstrated the temperature robustness of the PTMD. Additionally, the numerical results validated the accuracy of the pounding force model and the performance of PTMD.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 347 ◽  
Author(s):  
Seyed Mohammad Khatami ◽  
Hosein Naderpour ◽  
Rui Carneiro Barros ◽  
Anna Jakubczyk-Gałczyńska ◽  
Robert Jankowski

Structural pounding during earthquakes may cause substantial damage to colliding structures. The phenomenon is numerically studied using different models of collisions. The aim of the present paper is to propose an effective formula for the impact damping ratio, as a parameter of the impact force model used to study different problems of structural pounding under seismic excitations. Its accuracy has been verified by four various approaches. Firstly, for the case of collisions between two structural elements, the dissipated energy during impact has been compared to the loss of kinetic energy. In the second stage of verifications, the peak impact forces during single collision have been analyzed. Then, the accuracy of different equations have been verified by comparing the impact force time histories for the situation when a concrete ball is dropped on a rigid concrete surface. Finally, pounding between two structures during earthquakes has been studied. The results of the analysis focused on comparison between dissipated and kinetic energy show relatively low errors between calculated and assumed values of the coefficient of restitution when the proposed equation is used. In addition, the results of the comparison between experimentally and numerically determined peak impact forces during single collision confirm the effectiveness of the approach. The same conclusion has been obtained for the whole impact time history for collision between a ball and a rigid surface. Finally, the results of the comparative analysis, conducted for pounding between two structures during an earthquake, confirm the simulation accuracy when the proposed approach is used. The above conclusions indicate that the proposed formula for impact damping ratio, as a parameter of impact force model for simulation of earthquake-induced structural pounding, is very effective and accurate in numerical simulations in the case of different scenarios.


2019 ◽  
Vol 8 (3) ◽  
pp. 2263-2269

Latest trend in the development high rise structure demanding taller and lighter structures, which are progressively adaptable with very low damping ratio. As the structures developing vertically, they are ending up all the more affecting by powerful excitation forces, for example, wind and seismic forces. For the more safety of structure and inhabitant's solace, the vibrations of the tall structures become a major issue for both structural designers. So as to control the vibration, various methodologies are proposed out of the few systems accessible for vibration control. Out of numerous methods, TMD has been observed to be increasingly powerful in controlling the dynamic forces caused due to seismic and wind excitations. In this paper, the adequacy of TMD in controlling the dynamic reaction of structures and the impact of different ground movement parameters on the seismic viability of TMD is researched. Essentially, a TMD is a vibratory subsystem appended to a bigger scale host structure so as to lessen the dynamic reactions. The frequency of damper will tuned to essential structure's frequency, so when frequency is high, the damper will results to resonate out of phase along with structural movement. The objective of this work is to study the impact of TMD on the dynamic forces brought about by seismic tremor and wind excitations in standard just as unpredictable in tall RC building structures. For that three 22 story RC building structures are considered with a similar arrangement out of which one ordinary regular structure and the other two are irregular RC structures are demonstrated in Etabs. In irregular RC structures, Stiffness irregularity and torsional irregularity are considered. For assessing seismic and wind reactions of structures, time history analysis, and static analysis used, with and without the tuned mass damper in ETABS. The outcomes acquired from the investigation of three 22 story RC structures with and without tuned mass damper are compared


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Qichao Xue ◽  
Jingcai Zhang ◽  
Jian He ◽  
Chunwei Zhang

This paper investigates the control performance of pounding tuned mass damper (PTMD) in reducing the dynamic responses of SDOF (Single Degree of Freedom) structure. Taking an offshore jacket-type platform as an example, the optimal damping ratio and the gap between mass block and viscoelastic material are presented depending on a parametric study. Control efficiency influenced by material properties and contact geometries for PTMD is analyzed here, as well as robustness of the device. The results of numerical simulations indicated that satisfactory vibration mitigation and robustness can be achieved by an optimally designed PTMD. Comparisons between PTMD and traditional TMD demonstrate the advantages of PTMD, not only in vibration suppression and costs but also in effective frequency bandwidth.


Author(s):  
Duy-Chinh Nguyen

In this paper, an analytical method is presented to determine the optimal parameters of the symmetric tuned mass damper, such as the ratio between natural frequency of tuned mass damper and shaft (tuning ratio) and the ratio of the viscous coefficient of tuned mass damper (damping ratio). The optimal parameters of tuned mass damper are applied to reduce the torsional vibration of the shaft based on consideration of the vibration duration and stability criterion. The dynamic equations of the shaft are provided via Lagrangian equations, and the optimal parameters of tuned mass damper are derived by using the principle of minimum kinetic energy. Analytical and numerical examples are implemented to verify the reliability of the proposed method. The analytical and numerical results indicate that the optimal parameters of tuned mass damper have significant effects in the torsional vibration reduction of the shaft.


2021 ◽  
pp. 014459872110520
Author(s):  
Yabin Gao ◽  
Xin Xiang ◽  
Ziwen Li ◽  
Xiaoya Guo ◽  
Peizhuang Han

Hydraulic slotting has become one of the most common technologies adopted to increase permeability in low permeability in coal field seams. There are many factors affecting the rock breaking effects of water jets, among which the impact force cannot be ignored. To study the influencing effects of contact surface shapes on jet flow patterns and impact force, this study carried out experiments involving water jet impingement planes and boreholes under different pressure conditions. The investigations included numerical simulations under solid boundary based on gas–liquid coupling models and indoor experiments under high-speed camera observations. The results indicated that when the water jets impinged on different contact surfaces, obvious reflection flow occurred, and the axial velocity had changed through three stages during the development process. Moreover, the shapes of the contact surfaces, along with the outlet pressure, were found to have impacts on the angles and velocities of the reflected flow. The relevant empirical formulas were summarized according to this study's simulation results. In addition, the flow patterns and shapes of the contact surfaces were observed to have influencing effects on the impact force. An impact force model was established in this study based on the empirical formula, and the model was verified using both the simulation and experimental results. It was confirmed that the proposed model could provide important references for the optimization of the technical parameters water jet systems, which could provide theoretical support for the further intelligent and efficient transformation of coal mine drilling water jet technology.


Sign in / Sign up

Export Citation Format

Share Document