scholarly journals Seismic and Wind Analysis of Regular and Irregular RC Structures with Tuned Mass Damper

2019 ◽  
Vol 8 (3) ◽  
pp. 2263-2269

Latest trend in the development high rise structure demanding taller and lighter structures, which are progressively adaptable with very low damping ratio. As the structures developing vertically, they are ending up all the more affecting by powerful excitation forces, for example, wind and seismic forces. For the more safety of structure and inhabitant's solace, the vibrations of the tall structures become a major issue for both structural designers. So as to control the vibration, various methodologies are proposed out of the few systems accessible for vibration control. Out of numerous methods, TMD has been observed to be increasingly powerful in controlling the dynamic forces caused due to seismic and wind excitations. In this paper, the adequacy of TMD in controlling the dynamic reaction of structures and the impact of different ground movement parameters on the seismic viability of TMD is researched. Essentially, a TMD is a vibratory subsystem appended to a bigger scale host structure so as to lessen the dynamic reactions. The frequency of damper will tuned to essential structure's frequency, so when frequency is high, the damper will results to resonate out of phase along with structural movement. The objective of this work is to study the impact of TMD on the dynamic forces brought about by seismic tremor and wind excitations in standard just as unpredictable in tall RC building structures. For that three 22 story RC building structures are considered with a similar arrangement out of which one ordinary regular structure and the other two are irregular RC structures are demonstrated in Etabs. In irregular RC structures, Stiffness irregularity and torsional irregularity are considered. For assessing seismic and wind reactions of structures, time history analysis, and static analysis used, with and without the tuned mass damper in ETABS. The outcomes acquired from the investigation of three 22 story RC structures with and without tuned mass damper are compared

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Afham Zulhusmi Ahmad ◽  
Aminudin Abu ◽  
Lee Kee Quen ◽  
Nor A’zizi Othman ◽  
Faridah Che In

The Tuned Mass Damper (TMD) is generally as a passive vibration control device consisting of added auxiliary mass with functioning spring and damping elements. TMD is basically designed to be tuned to the dominant frequency of a structure which the excitation of frequency will resonate the structural motion out of phase to reduce unwanted vibration. However, a single unit TMD is only capable of suppressing the fundamental structural mode. In order to control multimode vibrations and to cater wide band seismic frequency, more than one TMD is required to improve the effectiveness of a control mechanism. For the purpose of this study, a 3-storey benchmark reinforced structural building subjected to El Centro seismic ground motion is modelled as uncontrolled Primary Structure (PS) by considering appropriate structural properties such as stiffness and damping. Mathematical modelling of uncontrolled PS is developed and further evaluated numerically by assuming the PS as an equivalent lumped system. For the case of controlled PS which the passive mechanism is included to the system, optimum parameters of both TMD and Multiple TMD (MTMD) are designed to be tuned to the dedicated structural modes where the performance is dependent on specified parameters such as auxiliary mass ratio, optimum damping ratio, and optimum frequency ratio. The eigen value analysis is carried out by assuming that the structure is a linear time-invariant system. The input and output components of structural system arrangements are then characterized in the transfer function manner and then converted into state space function. To enhance structural control effectiveness, the adaptive system is incorporated by the attachment of Magneto-Rheological (MR) damper to both single TMD and MTMD passive system. The response analysis of the control system arrangements is executed using both time history and frequency response analysis. The main objectives of the design are to minimize both structural peak and Root Mean Square (RMS) displacements. From the analysis, the designed control mechanisms are concluded as highly effective in reducing all structural floor displacements for the semi-active cases with 99% displacement reduction for the third and second floors, and 98% for the first floor, compared to the uncontrolled case. It is concluded that the MR damper significantly contributed to the enhancement of the passive system to mitigate structural seismic vibration.


2017 ◽  
Vol 24 (17) ◽  
pp. 4023-4036 ◽  
Author(s):  
Wenxi Wang ◽  
Xugang Hua ◽  
Xiuyong Wang ◽  
Zhengqing Chen ◽  
Gangbing Song

Owing to its easy implementation and robustness, the pounding tuned mass damper (PTMD), which uses viscoelastic materials to cover the pounding boundary to increase the energy dissipation during impact, has been studied in recent years. The conventional PTMD design includes a gap between the pounding mass and the viscoelastic material; the value of this gap should be optimized. In this paper, a novel PTMD is proposed to control structural vibrations. In the proposed PTMD, the pounding boundary covered by viscoelastic materials is simply added to one side of the tuned mass when the tuned mass is in the equilibrium position. Unlike the conventional PTMD, the gap between the tuned mass and the pounding boundary is zero in the proposed design and is no longer a design parameter. A new analytic model is proposed to accurately predict the impact force between viscoelastic materials and steel. Through comparison with the impact force and the indentation from impact experiments, the accuracy of the proposed impact force model is validated. To verify the control performance of the proposed PTMD, an experimental study on a frame with the proposed PTMD is carried out to investigate the control performance in free vibration and forced vibration cases. Both experimental and numerical results show that the proposed PTMD can effectively reduce the response of the frame structure and that the damping ratio of the frame is significantly increased.


2021 ◽  
pp. 107754632110004
Author(s):  
Sanjukta Chakraborty ◽  
Aparna (Dey) Ghosh ◽  
Samit Ray-Chaudhuri

This article presents the design of a tuned mass damper with a conical spring to enable tuning to the natural frequency of the system at multiple values, as may be convenient in case of a system with fluctuations in the mass. The principle and design procedure of the conical spring in the context of a varying mass system are presented. A passive feedback control mechanism based on a simple pulley-mass system is devised to cater to the multi-tuning requirements. A design example of an elevated water tank with fluctuating water content, subjected to ground excitation, is considered to numerically illustrate the efficiency of such a tuned mass damper associated with the conical spring. The conical spring is designed based on the tuning requirements at different mass conditions of the elevated water tank by satisfying the allowable load bearing capacity of the spring. Comparisons are made with the conventional passive tuned mass damper with a linear spring tuned to the full tank condition. Results from time history analysis reveal that the conical spring-tuned mass damper can be successfully designed to remain tuned and thereby achieve significant response reductions under stiffening conditions of the primary structure, whereas the linear spring-tuned mass damper suffers performance degradation because of detuning, whenever there is any fluctuation in the system mass.


2021 ◽  
Vol 11 (8) ◽  
pp. 3425
Author(s):  
Marco Zucca ◽  
Nicola Longarini ◽  
Marco Simoncelli ◽  
Aly Mousaad Aly

The paper presents a proposed framework to optimize the tuned mass damper (TMD) design, useful for seismic improvement of slender masonry structures. A historical masonry chimney located in northern Italy was considered to illustrate the proposed TMD design procedure and to evaluate the seismic performance of the system. The optimization process was subdivided into two fundamental phases. In the first phase, the main TMD parameters were defined starting from the dynamic behavior of the chimney by finite element modeling (FEM). A series of linear time-history analyses were carried out to point out the structural improvements in terms of top displacement, base shear, and bending moment. In the second phase, masonry's nonlinear behavior was considered, and a fiber model of the chimney was implemented. Pushover analyses were performed to obtain the capacity curve of the structure and to evaluate the performance of the TMD. The results of the linear and nonlinear analysis reveal the effectiveness of the proposed TMD design procedure for slender masonry structures.


Author(s):  
Duy-Chinh Nguyen

In this paper, an analytical method is presented to determine the optimal parameters of the symmetric tuned mass damper, such as the ratio between natural frequency of tuned mass damper and shaft (tuning ratio) and the ratio of the viscous coefficient of tuned mass damper (damping ratio). The optimal parameters of tuned mass damper are applied to reduce the torsional vibration of the shaft based on consideration of the vibration duration and stability criterion. The dynamic equations of the shaft are provided via Lagrangian equations, and the optimal parameters of tuned mass damper are derived by using the principle of minimum kinetic energy. Analytical and numerical examples are implemented to verify the reliability of the proposed method. The analytical and numerical results indicate that the optimal parameters of tuned mass damper have significant effects in the torsional vibration reduction of the shaft.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaohan Wu ◽  
Jun Wang ◽  
Jiangyong Zhou

A high four-tower structure is interconnected with a long sky corridor bridge on the top floor. To reduce the earthquake responses and member forces of the towers and sky corridor bridge, a passive control strategy with a friction pendulum tuned mass damper (FPTMD) was adopted. The sky corridor bridge was as the mass of FPTMD. The connection between the towers and the sky corridor bridge was designed as flexible links, where friction pendulum bearings (FPBs) and viscous dampers were installed. Elastoplastic time-history analysis was conducted by using Perform-3D model to look into its seismic behavior under intensive seismic excitation. The optimal design of the FPTMD with varying friction coefficients and radius of friction pendulum bearing (FPB) under seismic excitations was carried out, and the seismic behavior of the structure was also investigated at the same time.Results show that, for this four-tower connected structure, the friction pendulum tuned mass damper (FPTMD) has very well effect on seismic reduction. The structure can meet the seismic resistance design requirements.


2019 ◽  
Vol 9 (4) ◽  
pp. 632 ◽  
Author(s):  
Peng Zhang ◽  
Devendra Patil ◽  
Siu Ho

The pounding tuned mass damper (PTMD) is a novel vibration control device that can effectively mitigate the undesired vibration of subsea pipeline structures. Previous studies have verified that the PTMD is more effective and robust compared to the traditional tuned mass damper. However, the PTMD relies on a viscoelastic delimiter to dissipate energy through impact. The viscoelastic material can be corroded by the various chemical substances dissolved in the seawater, which means that there can be possible deterioration in its mechanical property and damping ability when it is exposed to seawater. Therefore, we aim to conduct an experimental study on the impact behavior and energy dissipation of the viscoelastic material submerged in seawater in this present paper. An experimental apparatus, which can generate and measure lateral impact, is designed and fabricated. A batch of viscoelastic tapes are submerged in seawater and samples will be taken out for impact tests every month. Pounding stiffness, hysteresis loops and energy dissipated per impact cycle are employed to characterize the impact behavior of the viscoelastic material. The experimental results suggest that the seawater has little influence on the behavior of the viscoelastic tapes. Even after continuous submersion in seawater for 5 years, the pounding stiffness and energy dissipation remains at the same level.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Huaguo Gao ◽  
Congbao Wang ◽  
Chen Huang ◽  
Wenlong Shi ◽  
Linsheng Huo

The tuned mass damper (TMD) can be applied to suppress earthquake, wind, and pedestrian- and machine-induced vibration in factory buildings or large span structures. However, the traditional TMD with a fixed frequency will not be able to perform effectively against the frequency variations in multiple hazards. This paper proposed a frequency-adjustable tuned mass damper (FATMD) to solve this limitation of current TMD. The FATMD presented in this paper is composed of a simple assembly consisting of a supported beam with a mass, in which the frequency of the FATMD is changed by adjusting the span of the beam. The kinematic equation of a single degree of freedom (SDOF) structure installed with an FATMD is established to analyze the effect of the damping ratio, mass ratio, and stiffness on the vibration damping. The fundamental frequency of the FATMD at different spans is verified by simulation and experiments. Forced vibration experiments with different excitation frequencies are also conducted to verify the performance of the FATMD. The results show that the proposed FATMD can effectively suppress the vertical vibration of structures at different excitation frequencies, including frequencies at a range higher than what a traditional TMD may not be able to suppress. Additionally, the proposed FATMD is applied to a long-span pedestrian bridge which vibrates frequently due to the walking of pedestrians, the running of escalators, and earthquakes. The numerical results indicate that the FATMD can effectively reduce the vertical vibration of the pedestrian bridge under the excitations of pedestrians, escalators, and earthquakes.


Sign in / Sign up

Export Citation Format

Share Document