Realising embedded stiffness in hydraulic implementations of stiffness-damping-inertance configurations

2021 ◽  
pp. 107754632110337
Author(s):  
Sara Y Zhang ◽  
Hui Yuan ◽  
Jason Z Jiang ◽  
Simon Neild ◽  
Wei-Xin Ren

The performance benefits of passive vibration suppression with network configurations consisting of stiffness, damping and inertance elements have been demonstrated for a wide range of mechanical systems. Considering physical implementations of these beneficial network configurations, hydraulic realisations have the advantages of durability and simplicity for integration with existing hydraulic dampers. Such designs are exemplified by fluid inerters and fluid-inerter-damper devices. However, in contrast to the convenience of realising inertance and damping elements, realising ‘embedded’ stiffness is very challenging. We use ‘embedded’ to refer to a network element, which is not purely in series or in parallel with the remainder of the network but instead lies within the network layout. In this work, a setup using a rubber membrane to realise such embedded stiffness is proposed, together with a procedure for hydraulic implementations of any stiffness-damping-inertance configurations. The nonlinear properties of the embedded stiffness due to rubber membrane properties are then investigated both theoretically and experimentally. In addition, the effectiveness of both the membrane setup and the design procedure are demonstrated via a case study of suspension design for passenger vehicle ride comfort enhancement.

2013 ◽  
Vol 332 ◽  
pp. 139-144 ◽  
Author(s):  
Karim Hammoudi ◽  
John Mc Donald

Mobile Mapping Systems (MMS’s) are powerful tools for rapidly and massively collecting imagery in various environments (e.g., rural, semi-urban, urban). In particular, the data collected at terrestrial level can be exploited to complement aerial acquisitions for extending GIS databases,visualizing and modeling urban environments and studying environment morphogenesis over time. Hence, the development of mobile mapping platforms is a topic of great interest for many mapping agencies and surveying companies. Moreover, the experimental imaging systems of mapping vehicles are equipped with varied infrastructures in part resulting from the wide range of targeted applications. Determining a detailed design procedure for such imaging systems is of critical importance, and can be both arduous and time-consuming. Although commercial imaging systems can be exploited directly they are often pre-configured for specific applications. For these reasons, we propose a case study that deals with the development of an orientable and scalable imaging system. In particular, this paper focusses on the primary stage of the mechanical implementation of a multi-camera infrastructure. To this effect, we provide a design document that includes full technical specifications and drawings for creating a roof-mounted camera mast from a vehicle platform. We also provide an inventory of resources required for creating the system. As part of the design process we analyse some well-known MMS’s paying particular attention to their imaging systems. Finally, we evaluate the proposed design by creating the complete 3D mock-up of the camera system at real-scale and by simulating camera configurations from an experimental van platform. Experimental results clearly show the usefulness of this study in the design of an experimental and multi-purpose imaging system.


Author(s):  
Sara Ying Zhang ◽  
Yi-Yuan Li ◽  
Jason Zheng Jiang ◽  
Simon A. Neild ◽  
John H. G. Macdonald

Tuned mass dampers (TMDs), in which a reaction mass is attached to a structural system via a spring–parallel–damper connection, are commonly used in a wide range of applications to suppress deleterious vibrations. Recently, a mass-included absorber layout with an inerter element, termed the tuned mass damper inerter (TMDI), was introduced, showing significant performance benefits on vibration suppression. However, there are countless mass-included absorber layouts with springs, dampers and inerters, which could potentially provide more preferred dynamic properties. Currently, because there is no systematic methodology for accessing them, only an extremely limited number of mass-included absorber layouts have been investigated. This paper proposes an approach to identify optimum vibration absorbers with a reaction mass. Using this approach, a full class of absorber layouts with a reaction mass and a pre-determined number of inerters, dampers and springs connected in series and parallel, can be systematically investigated using generic Immittance-Function-Networks. The advan- tages of the proposed approach are demonstrated via a 3 d.f. structure example.


Author(s):  
Avesta Goodarzi ◽  
Neda Pandarathil ◽  
Ebrahim Esmailzadeh

Vibrations resulting from flexural motion of elastic vehicle structures are of particular significance to the ride comfort of vehicles. Tuned-mass dampers (dynamic vibration absorbers) are among the most commonly used devices for vibration suppression. In this paper the application of optimum tuned-mass dampers is addressed, that can be used to reduce annoying flexibility originated vibration. A newly developed flexible model is representing the vehicle with eight-degree-of-freedom (8-DOF) with a systematic approach to select the optimum locations of the absorbers. Using passive vibration absorbers and applying the min-max optimization method to find the optimum values of the design parameters. Simulation results for a case study bus with flexible structure confirm the strength of the proposed design. For those who wish to pursue future research on this subject few suggestions are given.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


1992 ◽  
Vol 25 (4-5) ◽  
pp. 161-168 ◽  
Author(s):  
J. Einfeldt

A process, called Bio-Denipho, for combined biological phosphorus and nitrogen removal in a combination of an anaerobic tank and two oxidation ditches is described. In this process the anaerobic tank consisting of three sections working in series is followed by two oxidation ditches. These too are working in series, but with both inlet to and outlet from the tanks changing in a cycle. The Bio-Denipho process is described specifically for the process itself and as a case study for the implementation of the process on a 265,000 pe wastewater treatment plant for the city of Aalborg in Denmark. The plant was designed and erected in two stages and the last stage was inaugurated October 31,1989. Lay-out and functions for the plant is described and design loads, plan lay-out and tank volumes are given in this paper together with performance data for the first year in operation.


1998 ◽  
Vol 38 (1) ◽  
pp. 87-95 ◽  
Author(s):  
M. Roš ◽  
J. Vrtovšek

A combined anaerobic anoxic aerobic reactor for the treatment of the industrial wastewater that contains nitrogen and complex organic compounds as well as its design procedure is presented. The purpose of our experiments was to find a simple methodology that would provide combined reactor design. The reactor is based on the combination of anaerobic, anoxic and aerobic process in one unit only. It was found that the HRT even under 1 hour in the anaerobic zone is long enough for the efficient transformation of complex organic compounds into readily biodegradable COD which is then used in dentrification process. In the N-NO3 concentration range 1.5-50 mg/l the denitrification rate could be expressed as half-order reaction when the CODrb was in excess. N-NO3 removal efficiency is controlled by the recycle flow from the aerobic to the anoxic zone. Nitrification rate can be expressed as first, half or zero-order reaction with respect to effluent N-NH4 concentration. Nitrification rate depends on the dissolved oxygen concentration and hydrodynamic conditions in the reactor. Case study for design of a pilot plant of the combined reactor for treatment of pre-treated pharmaceutical wastewater is shown. Characteristics of pre-treated wastewater were: COD=200 mg/l, BOD5=20 mg/l, N-Kjeldahl=80 mg/l, N-NH4=70 mg/l, N-NOx&lt;1 mg/l, P-PO4=5 mg/l. Legal requirements for treated wastewater were: COD=&lt;100 mg/l, BOD5&lt;5 mg/l, N-NH4=&lt;1 mg/l, N-NOx=&lt;10 mg/l.


Oxford Studies in Ancient Philosophy provides, twice each year, a collection of the best current work in the field of ancient philosophy. Each volume features original essays that contribute to an understanding of a wide range of themes and problems in all periods of ancient Greek and Roman philosophy, from the beginnings to the threshold of the Middle Ages. From its first volume in 1983, OSAP has been a highly influential venue for work in the field, and has often featured essays of substantial length as well as critical essays on books of distinctive importance. Volume LV contains: a methodological examination on how the evidence for Presocratic thought is shaped through its reception by later thinkers, using discussions of a world soul as a case study; an article on Plato’s conception of flux and the way in which sensible particulars maintain a kind of continuity while undergoing constant change; a discussion of J. L. Austin’s unpublished lecture notes on Aristotle’s Nicomachean Ethics and his treatment of loss of control (akrasia); an article on the Stoics’ theory of time and in particular Chrysippus’ conception of the present and of events; and two articles on Plotinus, one that identifies a distinct argument to show that there is a single, ultimate metaphysical principle; and a review essay discussing E. K. Emilsson’s recent book, Plotinus.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexey Bondar ◽  
Olga Rybakova ◽  
Josef Melcr ◽  
Jan Dohnálek ◽  
Petro Khoroshyy ◽  
...  

AbstractFluorescence-detected linear dichroism microscopy allows observing various molecular processes in living cells, as well as obtaining quantitative information on orientation of fluorescent molecules associated with cellular features. Such information can provide insights into protein structure, aid in development of genetically encoded probes, and allow determinations of lipid membrane properties. However, quantitating and interpreting linear dichroism in biological systems has been laborious and unreliable. Here we present a set of open source ImageJ-based software tools that allow fast and easy linear dichroism visualization and quantitation, as well as extraction of quantitative information on molecular orientations, even in living systems. The tools were tested on model synthetic lipid vesicles and applied to a variety of biological systems, including observations of conformational changes during G-protein signaling in living cells, using fluorescent proteins. Our results show that our tools and model systems are applicable to a wide range of molecules and polarization-resolved microscopy techniques, and represent a significant step towards making polarization microscopy a mainstream tool of biological imaging.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 121
Author(s):  
Ekaterina Ponkratova ◽  
Eduard Ageev ◽  
Filipp Komissarenko ◽  
Sergei Koromyslov ◽  
Dmitry Kudryashov ◽  
...  

Fabrication of hybrid micro- and nanostructures with a strong nonlinear response is challenging and represents a great interest due to a wide range of photonic applications. Usually, such structures are produced by quite complicated and time-consuming techniques. This work demonstrates laser-induced hybrid metal-dielectric structures with strong nonlinear properties obtained by a single-step fabrication process. We determine the influence of several incident femtosecond pulses on the Au/Si bi-layer film on produced structure morphology. The created hybrid systems represent isolated nanoparticles with a height of 250–500 nm exceeding the total thickness of the Au-Si bi-layer. It is shown that fabricated hybrid nanostructures demonstrate enhancement of the SHG signal (up to two orders of magnitude) compared to the initial planar sample and a broadband photoluminescence signal (more than 200 nm in width) in the visible spectral region. We establish the correlation between nonlinear signal and phase composition provided by Raman scattering measurements. Such laser-induced structures have significant potential in optical sensing applications and can be used as components for different nanophotonic devices.


Sign in / Sign up

Export Citation Format

Share Document