A field experiment on surface wave isolation by partially embedded periodic pile barriers

2021 ◽  
pp. 107754632110542
Author(s):  
Yan-Zhao Liu ◽  
Si-Shun Yu ◽  
Ze Liu ◽  
Gui-Lan Yu

The bandgap characteristics of periodic structures show a great application prospect in seismic isolation and vibration mitigation. A T-shaped partially embedded periodic pile barrier is designed and studied based on the Bloch’s theorem. The proposed structure is fabricated and tested in field experiment to validate the simulation and the isolation performance. Good agreements are observed between the measured and the corresponding simulated results which present effective isolation for surface waves. The influences of the embedded length in the soil and the arrangement of the pile are investigated. The results show that the embedded length is the key parameter affecting the vibration attenuation. The smaller the embedded length, the lower the frequency of attenuation zone, and thanks to the embedded length; the proposed barrier exhibits better performances than the fully embedded and non-embedded barriers in maximum bandgap width, tunability, and feasibility in engineering. Gradient distribution of the embedded length leads to a wider frequency range of attenuation.

Author(s):  
Dawei Zhu ◽  
Xiuchang Huang ◽  
Hongxing Hua ◽  
Hui Zheng

Owing to their locally resonant mechanism, internal resonators are usually used to provide band gaps in low-frequency region for many types of periodic structures. In this study, internal resonators are used to improve the vibration attenuation ability of finite periodic tetra-chiral coating, enabling high reduction of the radiated sound power by a vibrating stiffened plate. Based on the Bloch theorem and finite element method, the band gap characteristics of tetra-chiral unit cells filled with and without internal resonators are analysed and compared to reveal the relationship between band gaps and vibration modes of such tetra-chiral unit cells. The rotational vibration of internal resonators can effectively strengthen the vibration attenuation ability of tetra-chiral lattice and extend the effective frequency range of vibration attenuation. Two tetra-chiral lattices with and without internal resonators are respectively designed and their vibration transmissibilities are measured using the hammering method. The experimental results confirm the vibration isolation effect of the internal resonators on the finite periodic tetra-chiral lattice. The tetra-chiral lattice as an acoustic coating is applied to a stiffened plate, and analysis results indicate that the internal resonators can obviously enhance the vibration attenuation ability of tetra-chiral lattice coating in the frequency range of the band gap corresponding to the rotating vibration mode of internal resonators. When the soft rubber with the internal resonators in tetra-chiral layers has gradient elastic modulus, the vibration attenuation ability and noise reduction of the tetra-chiral lattice coating are basically enhanced in the frequency range of the corresponding band gaps of tetra-chiral unit cells.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2021 ◽  
pp. 136943322110646
Author(s):  
Peng Zhou ◽  
Shui Wan ◽  
Xiao Wang ◽  
Yingbo Zhu ◽  
Muyun Huang

The attenuation zones (AZs) of periodic structures can be used for seismic isolation design. To cover the dominant frequencies of more seismic waves, this paper proposes a new type of periodic isolation foundation (PIF) with an extremely wide low-frequency AZ of 3.31 Hz–17.01 Hz composed of optimized unit A with a wide AZ and optimized unit B with a low-frequency AZ. The two kinds of optimized units are obtained by topology optimization on the smallest periodic unit with the coupled finite element-genetic algorithm (GA) methodology. The transmission spectra of shear waves and P-waves through the proposed PIF of finite size are calculated, and the results show that the AZ of the PIF is approximately the superposition of the AZs of the two kinds of optimized units. Additionally, shake tests on a scale PIF specimen are performed to verify the attenuation performance for elastic waves within the designed AZs. Furthermore, numerical simulations show that the acceleration responses of the bridge structure with the proposed PIF are attenuated significantly compared to those with a concrete foundation under the action of different seismic waves. Therefore, the newly proposed PIF is a promising option for the reduction of seismic effects in engineering structures.


2017 ◽  
Vol 21 (3) ◽  
pp. 1119-1132 ◽  
Author(s):  
Gui-Lan Yu ◽  
Hong-Wei Miao

The vibration isolation performance of a PC sandwich plate with periodic hollow tube core is investigated experimentally and numerically. The experiment results reveal that there exist vibration attenuation zones in acceleration frequency responses which can be improved by increasing the number of periods or tuning some structure parameters. The presence of soft fillers shifts the attenuation zone to lower frequencies and enhances the capability of vibration isolation to some extent. Dispersion relations and acceleration frequency responses are calculated by finite element method using COMSOL MULTIPHYSICS. The attenuation zones obtained by experiments fit well with that by simulations, and both are consistent with the band gap in dispersion relations. The numerical and experimental studies in the present paper show that this PC sandwich plate exhibits a good performance on vibration isolation in low frequency ranges, which will provide some useful references for relevant research and potential applications in vibration propagation manipulations.


2021 ◽  
Author(s):  
Pavan Nuthi ◽  
Yixin Gu ◽  
Aida Nasirian ◽  
Alexandra Lindsay ◽  
Himanshu Purandare ◽  
...  

Abstract Several types of interfaces like foam and inflated air cells exist to reduce the effect of mechanical vibration experienced in human-machine interfaces in different scenarios such as transportation. However, their vibration attenuation performance in a wide frequency range relevant to whole body vibration (1–80 Hz) leaves much to be desired. In this study, we investigate the effect of inflation pressure on the vibration attenuation behavior of an air cell cushion. An experimental setup capable of conducting frequency sweep tests and regulating inflation pressure in an air cell array cushion was developed. Frequency sweep tests were conducted at various inflations and the vibration transmissibilities at static inflations were plotted. A dynamic inflation scheme was developed based on the apriori knowledge of inflation dependent transmissibilities. Furthermore, the closed loop behavior of the inflation scheme was evaluated with a frequency sweep test. The resulting closed loop transmissibility indicated better vibration attenuation performance than any single static inflation for the air cell array cushion in the range of frequencies relevant to whole body vibration. This result lays the groundwork for potential air cell cushions which modify their inflation dynamically through a direct feedback from sensors like accelerometers to attenuate vibration in a wide frequency range.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Diego P. Vasconcellos ◽  
Marcos Silveira

Abstract We explore the vibration attenuation of a periodic structure when one absorber with nonlinear cubic stiffness is included without increasing the total mass. Metastructures, and specifically periodic structures, present interesting characteristics for vibration attenuation that are not found in classical structures. These characteristics have been explored for automotive and aerospace applications, among others, as structures with low mass are paramount for these industries, and keeping low vibration levels in wide frequency range is also desirable. It has been shown that the addition of vibration absorbers in a periodic arrangement can provide vibration attenuation for shock input without increasing the total mass of a structure. In this work, the dynamical response of a metastructure with one nonlinear vibration absorber, with same mass as original structure, optimized for vibration attenuation under harmonic input is compared with a base metastructure without absorbers and a metastructure with linear absorbers via the evaluation of the H2 norm of the frequency response. A simplified approach is used to compare linear and nonlinear stiffness based on deformation energy, by considering linear and nonlinear restoring forces to be equal at mean deformation. The dynamical response of the optimal system is obtained numerically, and an optimization procedure based on sequential quadratic programming (SQP) is proposed to find the optimal position and stiffness coefficients of only one nonlinear absorber, showing that it results in lower level of vibrations than original structure and than structure with linear absorbers, while almost the same level as a structure with all nonlinear absorbers.


Author(s):  
Tsuyoshi Fukasawa ◽  
Satoshi Fujita

This paper describes the research and development of new type of the isolation systems suitable for various structures. Basic concept of the new isolation system is to realize cost effective design without any reduction in the isolation performance. This paper presents results obtained from experimental and analytical studies to evaluate isolation performances of newly developed the isolation system. In the experiment, static tests were first carried out using a 0.20 scale model (55 kg mass, and 0.50 m × 0.50 m × 0.27 m size) for isolated-light-weight-structures model which was supported by two linear ball bearings and, restoring force was provided to superstructure by transversal stiffness of a coiled spring, so as to examine restoring force characteristic of the coiled spring. Second, dynamic tests were implemented in order to investigate the isolation performance of the isolation system against several actual seismic inputs. In analysis, seismic response analyses for the scale model, regarding the vibration tests using the actual seismic wave, were carried out to evaluate the response analytical method for the isolation system using the coiled spring. From these results, the followings are clarified. (1) Analytical results for the isolated light-weight-structures model agree well with experiment results. (2) The newly developed seismic isolation system using the coiled spring reduced response accelerations of the light-weight-structures sufficiently.


Author(s):  
Vladislav S. Sorokin

The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fei Cao ◽  
Michael Z. Q. Chen ◽  
Yinlong Hu

In this paper, the seismic base isolation problem for all low-complexity networks containing one inerter, one spring, and one damper is studied based on a multi-degree-of-freedom model. The analytical solutions for the H2 performance optimization are derived, and the traditional tuned mass damper (TMD) is employed for comparison. Extensive numerical simulations are performed to verify the effectiveness of the obtained results. The results show that for different seismic wave excitations, some isolators are better than TMD in controlling the displacement of the main structure. Moreover, with the increase of the TMD mass ratio, the isolation performances of the inerter-based isolators are increasingly better than that of TMD.


Sign in / Sign up

Export Citation Format

Share Document