scholarly journals Low-density polyethylene films incorporated with silver nanoparticles to promote antimicrobial efficiency in food packaging

2019 ◽  
Vol 26 (4) ◽  
pp. 353-366
Author(s):  
Sabrina da Costa Brito ◽  
Joana D Bresolin ◽  
Kátia Sivieri ◽  
Marcos D Ferreira

Technological innovations in packaging are intended to prevent microbiological contaminations for ensuring food safety and preservation. In this context, researchers have investigated the antimicrobial effect of low-density polyethylene films incorporated with the following concentrations of silver nanoparticles: 1.50, 3.75, 7.50, 15.00, 30.00, 60.00, and 75.00 µg/ml. The films were characterized using field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. From the results of these techniques, it could be concluded that the silver nanoparticles incorporated in the low-density polyethylene films did not influence their physical, chemical, and thermal properties. The direct contact assays, shake-flask assays, and bacterial images obtained using scanning electron microscopy were used to analyze the antimicrobial activity of the films. In the microbial analyses, it was verified that the nanostructured films exhibited antimicrobial properties against all the microorganisms studied, although more notably for fungi and Gram-negative bacteria than the Gram-positive bacteria. Moreover, it was discovered that the packages, in which silver nanoparticles were incorporated, inhibited the growth and reproduction of bacterial cells during the early stages. These results suggest that the extruded low-density polyethylene films incorporated with silver nanoparticles may be an essential tool for improving food quality and safety.

2004 ◽  
Vol 67 (3) ◽  
pp. 475-479 ◽  
Author(s):  
JENNIFER L. GROWER ◽  
KAY COOKSEY ◽  
KELLY J. K. GETTY

The purpose of this study was to develop and characterize a packaging film coating containing nisin. A spot-on-lawn assay was used to determine the effect of acid type (ascorbic, acetic, hydrochloric, lactic) and nisin level (equal increments from 10,000 IU to 9 IU) to be used in the formulation of the film coating. Zones of inhibition were measured after incubation on tryptic soy agar (37°C, 48 h). Low-density polyethylene films coated with differing levels of nisin were characterized by field emission scanning electron microscopy, tensile strength, elongation, and water vapor transmission rate. The MIC of nisin in solution was 157 mg/ml. All acids were equally inhibitory (P > 0.05), but acetic acid produced the largest zone of inhibition (21 mm). Field emission scanning electron microscopy confirmed that the cloudy appearance of the films was due to sodium chloride found in the commercially prepared nisin. Tensile strength increased as nisin concentration increased, which also corresponded to increasing film thickness. The nisin coatings (10,000 and 2,500 IU/ml) did not have a significant effect (P > 0.05) on the water vapor transmission rate of the low-density polyethylene film.


1998 ◽  
Vol 4 (S2) ◽  
pp. 832-833
Author(s):  
Hongxi Zhang ◽  
Wei Chen

Silicone materials may be incorporated into organic thermoplastic resins to provide enhanced properties. Good dispersion of silicone with plastics is believed to be one of the keys to control the applications of these multiphase blends. In this study, we investigated the morphologies of mechanically mixed silicone/organic blends using scanning electron microscopy (SEM). Results provide an important piece of information that the optimum silicone phase dispersion can be achieved by matching the viscosities of the blend components.Most silicone and organic polymers are thermodynamically immiscible, forming multiphase structures for their blends. For example, a blend consisting of 90 wt% polydimethylsiloxane (PDMS) and 10% low density polyethylene (LDPE) was revealed by SEM to have a multiphase structure shown in Figure 1A where the PDMS was a Dow Corning® 3-5016 silanol-terminated siloxane fluid that forms the dispersed phase and the LDPE a Dow Chemical polyethylene having a melt index of 4.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 795 ◽  
Author(s):  
Daniel Canales ◽  
Lissette Montoille ◽  
Lina M. Rivas ◽  
J. Andrés Ortiz ◽  
Mauricio Yañez-S ◽  
...  

Low density polyethylene (LDPE) films were prepared with the incorporation of natural agents (carvacrol and trans-cinnamaldehyde) by the melting process. The co-precipitation method was used successfully to complex the carvacrol or trans-cinnamaldehyde with β-cyclodextrin (β-CD). The active compounds encapsulated in β-CD achieved ca. 90% encapsulation efficiency (E.E.). The inclusion complex studied by scanning electron microscopy (SEM) found particles of different sizes, ca. 4 μm. The active compounds were added directly (1 and 5 wt %) into the polymer matrix, yielding LDPE + carvacrol and LDPE + cinnamaldehyde films. The active compounds encapsulated in β-cyclodextrin (β-CD) were added to LDPE, yielding LDPE + β-CD-carvacrol and LDPE + β-CD-cinnamaldehyde films. The incorporation of carvacrol and trans-cinnamaldehyde, and their corresponding inclusion complexes with β-cyclodextrin, did not affect the thermal properties of LDPE. The microcapsules distributed in all polymer matrices had sizes of 5–20 μm as shown by scanning electron microscopy (SEM). In terms of mechanical properties, the polymers showed a slight decrease of Young’s modulus (12%) and yield stress compared (14%) to neat LDPE. This could be due to the essential oil acting as a plasticizer in the polymer matrix. The LDPE + carvacrol and LDPE + cinnamaldehyde films had the capacity to inhibit fungi by 99% compared to neat LDPE. The effectiveness against fungi of LDPE+β-CD + active agent was slower than by the direct incorporation of the essential oil in the LDPE in the same amount of active agent. The biocidal properties were related to the gradual release of active compound from the polymer. The results confirm the applicability of carvacrol, trans-cinnamaldehyde, and their corresponding inclusion complexes in active packaging, as well as their use in the food delivery industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Razieh Niazmand ◽  
Bibi Marzieh Razavizadeh ◽  
Farzaneh Sabbagh

The physical, thermal, mechanical, optical, microstructural, and barrier properties of low-density polyethylene films (LDPE) containing ferula asafoetida leaf and gum extracts were investigated. Results showed a reduction in elasticity and tensile strength with increasing extract concentration in the polymer matrix. The melting temperature and enthalpy increased with increasing concentration of extracts. The films containing extracts had lower L∗ and a∗ and higher b∗ indices. The films containing leaf extract had more barrier potential to UV than the gum extracts. The oxygen permeability in films containing 5% of leaf and gum extracts increased by 2.3 and 2.1 times, respectively. The morphology of the active films was similar to bubble swollen islands, which was more pronounced at higher concentrations of gum and leaf extracts. FTIR results confirmed some chemical interactions of ferula extracts with the polymer matrix. At the end of day 14th, the growth rate of Aspergillus niger and Saccharomyces cerevisea in the presence of the PE-Gum-5 reduced more than PE-Leaf-5 (3.7 and 2.4 logarithmic cycles, respectively) compared to the first day. Our findings showed that active LDPE films have desire thermo-mechanical and barrier properties for food packaging.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Pucci ◽  
Letizia Moretto ◽  
Giacomo Ruggeri ◽  
Francesco Ciardelli

AbstractA new polyethylene-compatible terthiophene chromophore, 5”-thio-(3- butyl)nonyl-2,2’:5’,2”-terthiophene, with melting point lower than 0°C was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (≈ 20) . Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation scheme.


1993 ◽  
Vol 56 (5) ◽  
pp. 390-394 ◽  
Author(s):  
ISABEL WALLS ◽  
PETER H. COOKE ◽  
ROBERT C. BENEDICT ◽  
ROBERT L. BUCHANAN

Artificial sausage casings were used as a model for studying bacterial attachment to meat connective tissue. Sausage casings of known mass were exposed to suspensions of Salmonella typhimurium in 0.15 M NaCl under various time, temperature, and inoculum level regimes, then washed to remove unattached bacteria. Attached bacterial cells were enumerated using both plate counts and scanning electron microscopy. Bacterial cells attached to sausage casing surfaces within 1 min of incubation. Numbers of attached cells increased with increasing temperature and inoculum levels and with time. Rates of attachment of S. typhimurium to sausage casings were comparable with those reported for attachment to meat surfaces. Sausage casings appear to be a convenient model for examining mechanisms of bacterial attachment to meats.


Sign in / Sign up

Export Citation Format

Share Document