scholarly journals Development of a High-Throughput Screening Method for LIM Kinase 1 Using a Luciferase-Based Assay of ATP Consumption

2011 ◽  
Vol 17 (4) ◽  
pp. 460-468 ◽  
Author(s):  
Mokdad Mezna ◽  
Ai Ching Wong ◽  
Margaret Ainger ◽  
Rebecca W. Scott ◽  
Tim Hammonds ◽  
...  

Kinases are attractive drug targets because of the central roles they play in signal transduction pathways and human diseases. Their well-formed adenosine triphosphate (ATP)–binding pockets make ideal targets for small-molecule inhibitors. For drug discovery purposes, many peptide-based kinase assays have been developed that measure substrate phosphorylation using fluorescence-based readouts. However, for some kinases these assays may not be appropriate. In the case of the LIM kinases (LIMK), an inability to phosphorylate peptide substrates resulted in previous high-throughput screens (HTS) using radioactive labeling of recombinant cofilin protein as the readout. We describe the development of an HTS-compatible assay that measures relative ATP levels using luciferase-generated luminescence as a function of LIMK activity. The assay was inexpensive to perform, and proof-of-principle screening of kinase inhibitors demonstrated that compound potency against LIMK could be determined; ultimately, the assay was used for successful prosecution of automated HTS. Following HTS, the secondary assay format was changed to obtain more accurate measures of potency and mechanism of action using more complex (and expensive) assays. The luciferase assay nonetheless provides an inexpensive and reliable primary assay for HTS that allowed for the identification of LIMK inhibitors to initiate discovery programs for the eventual treatment of human diseases.

2011 ◽  
Vol 16 (8) ◽  
pp. 869-877 ◽  
Author(s):  
Duncan I. Mackie ◽  
David L. Roman

In this study, the authors used AlphaScreen technology to develop a high-throughput screening method for interrogating small-molecule libraries for inhibitors of the Gαo–RGS17 interaction. RGS17 is implicated in the growth, proliferation, metastasis, and the migration of prostate and lung cancers. RGS17 is upregulated in lung and prostate tumors up to a 13-fold increase over patient-matched normal tissues. Studies show RGS17 knockdown inhibits colony formation and decreases tumorigenesis in nude mice. The screen in this study uses a measurement of the Gαo–RGS17 protein–protein interaction, with an excellent Z score exceeding 0.73, a signal-to-noise ratio >70, and a screening time of 1100 compounds per hour. The authors screened the NCI Diversity Set II and determined 35 initial hits, of which 16 were confirmed after screening against controls. The 16 compounds exhibited IC50 <10 µM in dose–response experiments. Four exhibited IC50 values <6 µM while inhibiting the Gαo–RGS17 interaction >50% when compared to a biotinylated glutathione-S-transferase control. This report describes the first high-throughput screen for RGS17 inhibitors, as well as a novel paradigm adaptable to many other RGS proteins, which are emerging as attractive drug targets for modulating G-protein-coupled receptor signaling.


2002 ◽  
Vol 7 (5) ◽  
pp. 441-450 ◽  
Author(s):  
Kinji Fuchikami ◽  
Hiroko Togame ◽  
Atsuko Sagara ◽  
Tomoko Satoh ◽  
Florian Gantner ◽  
...  

The family of phosphoinositide 3-kinases (PI3K) regulates fundamental cellular responses such as proliferation, apoptosis, motility, and adhesion. In particular, the PI3K γ isoform plays a critical role in the control of cell migration. Despite the attractiveness of PI3-kinases as drug targets, drug discovery efforts have been hampered by the lack of appropriate lipid kinase assay formats suitable for high-throughput screening. The authors report the development of a simple and robust 384-well plate assay that is based on33 P-phosphate transfer from radiolabeled [γ33 P]ATP to phosphatidylinositol immobilized on Maxisorp™ plates. The established assay format for PI3K γ was easily adapted to the automated screening platform and was successfully employed for high-throughput screening. Enzymatic and inhibition characteristics of recombinant human PI3K γ determined with the plate assay are in very good agreement with previously reported values determined in other assay formats. Maximal catalytic activity of PI3K γ was observed at pH 7.0. The apparent Km value for ATP using a 1:1 mixture of phosphatidylinositol and phosphatidylserine was determined to be 7.3μM (6.0-8.6 μM, 95% confidence interval [CI]). IC50 values for known PI3-kinase inhibitors were determined to be 1.45 nM (1.17-1.80 nM, 95% CI) for wortmannin and estimated from partial inhibition data to be 1400, 2830, and 21,400 nM for quercetin, LY294002, and staurosporine, respectively. This novel assay approach allows for screening of inhibitors of lipid kinases in high-throughput mode and thereby may facilitate the identification of novel inhibitory structures for drug development.


2011 ◽  
Vol 17 (3) ◽  
pp. 314-326 ◽  
Author(s):  
Xiaohu Tang ◽  
Kathleen I. Seyb ◽  
Mickey Huang ◽  
Eli R. Schuman ◽  
Ping Shi ◽  
...  

Aberrant protein-protein interactions are attractive drug targets in a variety of neurodegenerative diseases due to the common pathology of accumulation of protein aggregates. In amyotrophic lateral sclerosis, mutations in SOD1 cause the formation of aggregates and inclusions that may sequester other proteins and disrupt cellular processes. It has been demonstrated that mutant SOD1, but not wild-type SOD1, interacts with the axonal transport motor dynein and that this interaction contributes to motor neuron cell death, suggesting that disrupting this interaction may be a potential therapeutic target. However, it can be challenging to configure a high-throughput screening (HTS)–compatible assay to detect inhibitors of a protein-protein interaction. Here we describe the development and challenges of an HTS for small-molecule inhibitors of the mutant SOD1-dynein interaction. We demonstrate that the interaction can be formed by coexpressing the A4V mutant SOD1 and dynein intermediate complex in cells and that this interaction can be disrupted by compounds added to the cell lysates. Finally, we show that some of the compounds identified from a pilot screen to inhibit the protein-protein interaction with this method specifically disrupt the interaction between the dynein complex and mtSOD1 but not the dynein complex itself when applied to live cells.


2021 ◽  
Vol 26 (2) ◽  
pp. 248-256
Author(s):  
Gareth Davies ◽  
Hannah Semple ◽  
Megan McCandless ◽  
Jonathan Cairns ◽  
Geoffrey A. Holdgate

Enzymes represent a significant proportion of the druggable genome and constitute a rich source of drug targets. Delivery of a successful program for developing a modulator of enzyme activity requires an understanding of the enzyme’s mechanism and the mode of interaction of compounds. This allows an understanding of how physiological conditions in disease-relevant cells will affect inhibitor potency. As a result, there is increasing interest in evaluating hit compounds from high-throughput screens to determine their mode of interaction with the target. This work revisits the common inhibition modalities and illustrates the impact of substrate concentration relative to Km upon the pattern of changes in IC50 that are expected for increasing substrate concentration. It proposes a new, high-throughput approach for assessing mode of inhibition, incorporating analyses based on a minimal descriptive model, to deliver a workflow that allows rapid and earlier compound classification immediately after high-throughput screening.


2020 ◽  
Vol 25 (9) ◽  
pp. 1064-1071
Author(s):  
Maikel Izquierdo ◽  
De Lin ◽  
Sandra O’Neill ◽  
Martin Zoltner ◽  
Lauren Webster ◽  
...  

Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin–based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)–based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 μM) and arphamenine A (IC50 = 15.75 μM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.


2011 ◽  
Vol 16 (10) ◽  
pp. 1196-1205 ◽  
Author(s):  
Hendrik Falk ◽  
Theresa Connor ◽  
Hong Yang ◽  
Karen J. Loft ◽  
Joanne L. Alcindor ◽  
...  

Epigenetic aberrations are increasingly regarded as key factors in cancer progression. Recently, deregulation of histone acetyltransferases (HATs) has been linked to several types of cancer. Monocytic leukemia zinc finger protein (MOZ) is a member of the MYST family of HATs, which regulate gene expression in cell proliferation and differentiation. Deregulation of these processes through constitutively active MOZ fusion proteins gives rise to the formation of leukemic stem cells, rendering MOZ an excellent target for treating myeloid leukemia. The authors implemented a hit discovery campaign to identify small-molecule inhibitors of MOZ-HAT activity. They developed a robust, homogeneous assay measuring the acetylation of synthetic histone peptides. In a primary screening campaign testing 243 000 lead-like compounds, they identified inhibitors from several chemical classes. Secondary assays were used to eliminate assay-interfering compounds and prioritize confirmed hits. This study establishes a new high-throughput assay for HAT activity and could provide the foundation for the development of a new class of drugs for the treatment of leukemias.


2019 ◽  
Author(s):  
Huifang Xu ◽  
Weinan Liang ◽  
Linlin Ning ◽  
Yuanyuan Jiang ◽  
Wenxia Yang ◽  
...  

P450 fatty acid decarboxylases (FADCs) have recently been attracting considerable attention owing to their one-step direct production of industrially important 1-alkenes from biologically abundant feedstock free fatty acids under mild conditions. However, attempts to improve the catalytic activity of FADCs have met with little success. Protein engineering has been limited to selected residues and small mutant libraries due to lack of an effective high-throughput screening (HTS) method. Here, we devise a catalase-deficient <i>Escherichia coli</i> host strain and report an HTS approach based on colorimetric detection of H<sub>2</sub>O<sub>2</sub>-consumption activity of FADCs. Directed evolution enabled by this method has led to effective identification for the first time of improved FADC variants for medium-chain 1-alkene production from both DNA shuffling and random mutagenesis libraries. Advantageously, this screening method can be extended to other enzymes that stoichiometrically utilize H<sub>2</sub>O<sub>2</sub> as co-substrate.


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


2020 ◽  
Author(s):  
Yuru Wang ◽  
Christopher D Katanski ◽  
Christopher Watkins ◽  
Jessica N Pan ◽  
Qing Dai ◽  
...  

Abstract AlkB is a DNA/RNA repair enzyme that removes base alkylations such as N1-methyladenosine (m1A) or N3-methylcytosine (m3C) from DNA and RNA. The AlkB enzyme has been used as a critical tool to facilitate tRNA sequencing and identification of mRNA modifications. As a tool, AlkB mutants with better reactivity and new functionalities are highly desired; however, previous identification of such AlkB mutants was based on the classical approach of targeted mutagenesis. Here, we introduce a high-throughput screening method to evaluate libraries of AlkB variants for demethylation activity on RNA and DNA substrates. This method is based on a fluorogenic RNA aptamer with an internal modified RNA/DNA residue which can block reverse transcription or introduce mutations leading to loss of fluorescence inherent in the cDNA product. Demethylation by an AlkB variant eliminates the blockage or mutation thereby restores the fluorescence signals. We applied our screening method to sites D135 and R210 in the Escherichia coli AlkB protein and identified a variant with improved activity beyond a previously known hyperactive mutant toward N1-methylguanosine (m1G) in RNA. We also applied our method to O6-methylguanosine (O6mG) modified DNA substrates and identified candidate AlkB variants with demethylating activity. Our study provides a high-throughput screening method for in vitro evolution of any demethylase enzyme.


2021 ◽  
Vol 22 (6) ◽  
pp. 3041
Author(s):  
Gheorghita Menghiu ◽  
Vasile Ostafe ◽  
Radivoje Prodanović ◽  
Rainer Fischer ◽  
Raluca Ostafe

Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.


Sign in / Sign up

Export Citation Format

Share Document