Indole-3-Carbinol Inhibits Nasopharyngeal Carcinoma

2010 ◽  
Vol 29 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Wei Zhu ◽  
Wenxue Li ◽  
Guangyu Yang ◽  
Quanxin Zhang ◽  
Ming Li ◽  
...  

This study explored the effects of indole-3-carbinol on the proliferation of human nasopharyngeal carcinoma, both in vitro and in vivo, and the underlying mechanisms in inducing apoptosis of CNE1 cells. Proliferation, apoptosis, malondialdehyde, superoxide dismutase, glutathione peroxidase, expressions of caspase-9, and caspase-3 in human nasopharyngeal carcinoma cells CNE1 were examined. Indole-3-carbinol suppressed proliferation, induced apoptosis, decreased malondialdehyde level, increased the activity of superoxide dismutase and glutathione peroxidase, and up-regulated the expression of active fragments of caspase-9 and caspase-3 both in vitro and in vivo. It was concluded that indole-3-carbinol could inhibit proliferation and induce apoptosis of CNE1 cells and inhibit tumor growth in mice. Increased activity of superoxide dismutase and glutathione peroxidase and activated expression of caspase-9 and caspase-3 were also observed in indole-3-carbinol–treated tumors or tumor cells, suggesting that stress- and apoptosis-related molecules are involved in the indole-3-carbinol–induced apoptosis and inhibition of tumor growth.

Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5455-5462 ◽  
Author(s):  
Michael Wang ◽  
Liang Zhang ◽  
Xiaohong Han ◽  
Jing Yang ◽  
Jianfei Qian ◽  
...  

Abstract Atiprimod is a novel cationic amphiphilic compound and has been shown to exert antimyeloma effects both in vitro and in mouse experiments. This study was undertaken to evaluate the therapeutic efficacy of atiprimod on mantle cell lymphoma (MCL) and elucidate the mechanism by which it induces cell apoptosis. Atiprimod inhibited the growth and induced apoptosis of MCL cell lines and freshly isolated primary tumor cells in vitro. More importantly, atiprimod significantly inhibited tumor growth in vivo and prolonged the survival of tumor-bearing mice. However, atiprimod also exhibited lower cytotoxicity toward normal lymphocytes. Atiprimod activated c-Jun N-terminal protein kinases (JNK) and up-regulated the level of Bax, Bad, and phosphorylated Bcl-2, resulting in release of apoptosis-inducing factor (AIF) and cytochrome c from mitochondria and activation and cleavage of caspase-9, caspase-3, and PARP. However, AIF, but not activation of caspases or PARP, was responsible for apoptosis in MCL cells because an AIF inhibitor, but not pan-caspase or paspase-9 inhibitors, completely abrogated atiprimod-induced apoptosis. Taken together, our results demonstrate that atiprimod displays a strong anti-MCL activity. Cell apoptosis was induced mainly via activation of the AIF pathway. These results support the use of atiprimod as a potential agent in MCL chemotherapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiu-feng Wang ◽  
Xin-jun Liu ◽  
Qian-mei Zhou ◽  
Jia Du ◽  
Tian-ling Zhang ◽  
...  

Cardiomyocytes apoptosis can lead to heart failure. Conventional and alternative drugs, such as Chinese herbal remedies, have been developed to target cardiomyoblast cells apoptosis. In this study, we investigated the effects of ginsenoside Rb1 (Rb1), an active compound, which is isolated from Notoginseng and Ginseng on isoproterenol-(ISO-) induced apoptosis in rat cardiomyocytes and its mechanismin vivoandin vitro. Rb1 reduced the ISO-induced apoptosis in rat cardiomyocytes and H9c2 cells. The effect of Rb1 was significantly suppressed by H89 (inhibitor for PKA), but not by C-1 (inhibitor for PKC). Based on in-cell blot analysis, the ISO-induced PKA and PKC expressions were decreased by Rb1, which was inhibited by H89, but not by C-1. The expressions of caspase-3 and caspase-9 were decreased after treatment with both ISO and Rb1, but with no change for caspase-8. Our results indicated that Rb1 reducing ISO-induced rat cardiomyocytes apoptosis may be involved in PKA and caspase-9 pathways.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


2018 ◽  
Vol Volume 10 ◽  
pp. 5471-5477 ◽  
Author(s):  
Lin Peng ◽  
Yi-Teng Huang ◽  
Jian Chen ◽  
Yi-Xuan Zhuang ◽  
Fan Zhang ◽  
...  

2020 ◽  
Author(s):  
Guiqing Zhou ◽  
Jianhui Liu ◽  
Xiangyang Li ◽  
Yujian Sang ◽  
Yue Zhang ◽  
...  

Abstract Background: Silica nanoparticles (SiNPs) are found in environmental particulate matter and are proven to have adverse effects on fertility. The relationship and underlying mechanisms between miRNAs and apoptosis induced by SiNPs during spermatogenesis is currently ambiguous. Experimental design: The present study was designed to investigate the role of miRNA-450b-3p in the reproductive toxicity caused by SiNPs. In vivo, 40 male mice were randomly divided into control and SiNPs groups, 20 per group. The mice in the SiNPs group were administrated 20 mg/kg SiNPs by tracheal perfusion once every 5 days, for 35 days, and the control group were given the equivalent of a normal luminal saline. In vitro, spermatocyte cells were divided into 0 and 5 μg/mL SiNPs groups, after passaged for 30 generations, the GC-2spd cells in 5 μg/mL SiNPs groups were transfected with miRNA-450b-3p and its mimic and inhibitor. Results: In vivo, the results showed that SiNPs damaged tissue structures of testis, decreased the quantity and quality of the sperm, reduced the expression of miR-450b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, SiNPs obviously repressed the viability and increased the LDH level and apoptosis rate, decreased the levels of the miR-450b-3p, significantly enhanced the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3; while the mimic of miR-450b-3p reversed the changes induced by SiNPs, but inhibitor further promoted the effects induced by SiNPs.Conclusion: The result suggested that SiNPs could induce the spermatocyte apoptosis by inhibiting the miR-450b-3p expression to target promoting the MTCH2 resulting in activating mitochondrial apoptotic signaling pathways in the spermatocyte cells.


2000 ◽  
Vol 192 (7) ◽  
pp. 1035-1046 ◽  
Author(s):  
Veronika Jesenberger ◽  
Katarzyna J. Procyk ◽  
Junying Yuan ◽  
Siegfried Reipert ◽  
Manuela Baccarini

The enterobacterial pathogen Salmonella induces phagocyte apoptosis in vitro and in vivo. These bacteria use a specialized type III secretion system to export a virulence factor, SipB, which directly activates the host's apoptotic machinery by targeting caspase-1. Caspase-1 is not involved in most apoptotic processes but plays a major role in cytokine maturation. We show that caspase-1–deficient macrophages undergo apoptosis within 4–6 h of infection with invasive bacteria. This process requires SipB, implying that this protein can initiate the apoptotic machinery by regulating components distinct from caspase-1. Invasive Salmonella typhimurium targets caspase-2 simultaneously with, but independently of, caspase-1. Besides caspase-2, the caspase-1–independent pathway involves the activation of caspase-3, -6, and -8 and the release of cytochrome c from mitochondria, none of which occurs during caspase-1–dependent apoptosis. By using caspase-2 knockout macrophages and chemical inhibition, we establish a role for caspase-2 in both caspase-1–dependent and –independent apoptosis. Particularly, activation of caspase-1 during fast Salmonella-induced apoptosis partially relies on caspase-2. The ability of Salmonella to induce caspase-1–independent macrophage apoptosis may play a role in situations in which activation of this protease is either prevented or uncoupled from the induction of apoptosis.


2020 ◽  
Vol 52 (10) ◽  
pp. 1131-1139
Author(s):  
Qian Li ◽  
Min Wang ◽  
Yan Zhang ◽  
Liuqian Wang ◽  
Wei Yu ◽  
...  

Abstract Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and Southeast Asia. Nowadays, radiotherapy is the therapy of choice for NPC patients, and chemotherapy has been found as an alternative treatment for advanced NPC patients. However, finding novel drugs and pharmacologically therapeutic targets for NPC patients is still urgent and beneficial. Our study showed that BIX-01294 (BIX) can induce autophagic vacuoles formation and conversion of LC3B-I to LC3B-II in NPC cells in both dose- and time-dependent manners. Notably, the combination of BIX and chemotherapeutic drugs significantly decreased the cell viability and increased the lactate dehydrogenase release. Meanwhile, BIX plus cis-platinum (Cis) treatment induced pyroptosis in NPC cells as featured by cell swelling and bubble blowing from the plasma membrane, the increased frequency of annexin V and propidium iodide (PI) double-positive cells, as well as the cleavage of gasdermin E (GSDME) and caspase-3. Moreover, the deficiency of GSDME completely shifted pyroptosis to apoptosis. Furthermore, the inhibition of autophagy by chloroquine and the knockout of ATG5 gene significantly blocked the BIX-induced autophagy as well as pyroptosis in both in vitro and in vivo studies. Our data demonstrated that BIX-combined chemotherapeutic drugs could induce the Bax/caspase-3/GSDME-mediated pyroptosis through the activation of autophagy to enhance the chemosensitivity in NPC.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3842-3842
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Madhavi Bandi ◽  
Noopur Raje ◽  
Robert L Schlossman ◽  
...  

Abstract Abstract 3842 Poster Board III-778 Background and Rationale Vascular disrupting agents (VDAs) act via selectively disrupting established tumor vasculature and have shown remarkable clinical success as anti-cancer therapies. NPI-2358 is a novel VDA with a distinct structure and mechanism of action from other available VDAs. NPI-2358 binds to the colchicine-binding site of beta-tubulin preventing polymerization and disrupting the cytoplasmic microtubule network, thereby causing loss of vascular endothelial cytoskeletal function, and inducing cytotoxicity in cancer cells. Here, we examined the anti-angiogenic and anti-tumor activity of NPI-2358 in multiple myeloma (MM) cells using both in vitro and in vivo model systems. Material and Methods We utilized MM.1S, MM.1R, RPMI-8226, U266, and INA-6 human MM cell lines, as well as purified tumor cells from MM patients relapsing after prior anti-MM therapies. Cell viability/apoptosis assays were performed using MTT, trypan blue exclusion, and Annexin V/PI staining. Angiogenesis was measured in vitro using Matrigel capillary-like tube structure formation assays: Since human vascular endothelial cells (HUVECs) plated onto Matrigel differentiate and form capillary-like tube structures similar to in vivo neovascularization, this assay measures anti-angiogenic effects of drugs/agents. Migration assays were performed using transwell insert assays. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, Bax, pJNK and GAPDH. Statistical significance was determined using a Student t test. Results Treatment of MM.1S, RPMI-8226, MM.1R, INA-6, and KMS-12BM with NPI-2358 for 24h induces a dose-dependent significant (P < 0.005) decrease in viability of all cell lines (IC50 range: 5-8 nM; n=3). To determine whether NPI-2358-induced decrease in viability is due to apoptosis, MM cell lines were treated with NPI-2358 for 24h; harvested, and analyzed for apoptosis using Annexin V/PI staining. A significant increase in NPI-2358-induced apoptosis was observed in all MM cell lines (% Annexin V+/PI- apoptotic cells: MM.1S, 48 ± 2.3%; MM.1R, 46.6 ± 3.1%; RPMI-8226, 61.7 ± 4.5%; and INA-6, 59.9 ± 3.2%; P < 0.05; n=3). Importantly, NPI-2358 decreased viability of freshly isolated MM cells from patients (IC50 range: 3-7 nM; P < 0.005), without affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index for NPI-2358. Examination of in vitro angiogenesis using capillary-like tube structure formation assay showed that even low doses of NPI-2358 (7 nM treatment for 12h; IC50: 20 nM at 24h) significantly decreased tubule formation in HUVECs (70-80% decrease; P < 0.05). Transwell insert assays showed a marked reduction in serum-dependent migration of NPI-2358-treated MM cells (42 ± 2.1% inhibition in NPI-2358-treated vs. control; P < 0.05). NPI-2358 at the concentrations tested (5 nM for 12h) in the migration assays did not affect survival of MM cells (> 95% viable cells). A similar anti-migration activity of NPI-2358 was noted against HUVEC cells (48 ± 1.7% decrease in migration; P < 0.05). Mechanistic studies showed that NPI-2358-induced apoptosis was associated with activation of caspase-8, caspase-9, caspase-3 and PARP. Importantly, treatment of MM.1S cells with NPI-2358 (5 nM) triggered phosphorylation of c-Jun amino-terminal kinase (JNK), a classical stress response protein, without affecting Bcl-2 family members Bax and Bcl-2. Blockade of JNK using dominant negative strategy markedly abrogated NPI-2358-induced apoptosis. Conclusion Our preclinical data provide evidence for remarkable anti-angiogenic and anti-tumor activity of NPI-2358 against MM cells, without significant toxicity in normal cells. Ongoing studies are examining in vivo anti-MM activity of NPI-2358 in animal models. Importantly, a Phase-1 study of NPI-2358 as a single agent in patients with advanced malignancies (lung, prostrate and colon cancer) has already established a favorable pharmacokinetic, pharmacodynamic and safety profile; and, a Phase-2 study of the combination of NPI-2358 and docetaxel in non-small cell lung cancer showed encouraging safety, pharmacokinetic and activity data. These findings, coupled with our preclinical studies, provide the framework for the development of NPI-2358-based novel therapies to improve patient outcome in MM. Disclosures: Chauhan: Nereus Pharmaceuticals, Inc: Consultancy. Lloyd:Nereus Pharmaceuticals, In: Employment. Palladino:Nereus Pharmaceuticals, Inc: Employment. Anderson:Nereus Pharmaceuticals, Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document