BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis

2020 ◽  
Vol 52 (10) ◽  
pp. 1131-1139
Author(s):  
Qian Li ◽  
Min Wang ◽  
Yan Zhang ◽  
Liuqian Wang ◽  
Wei Yu ◽  
...  

Abstract Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and Southeast Asia. Nowadays, radiotherapy is the therapy of choice for NPC patients, and chemotherapy has been found as an alternative treatment for advanced NPC patients. However, finding novel drugs and pharmacologically therapeutic targets for NPC patients is still urgent and beneficial. Our study showed that BIX-01294 (BIX) can induce autophagic vacuoles formation and conversion of LC3B-I to LC3B-II in NPC cells in both dose- and time-dependent manners. Notably, the combination of BIX and chemotherapeutic drugs significantly decreased the cell viability and increased the lactate dehydrogenase release. Meanwhile, BIX plus cis-platinum (Cis) treatment induced pyroptosis in NPC cells as featured by cell swelling and bubble blowing from the plasma membrane, the increased frequency of annexin V and propidium iodide (PI) double-positive cells, as well as the cleavage of gasdermin E (GSDME) and caspase-3. Moreover, the deficiency of GSDME completely shifted pyroptosis to apoptosis. Furthermore, the inhibition of autophagy by chloroquine and the knockout of ATG5 gene significantly blocked the BIX-induced autophagy as well as pyroptosis in both in vitro and in vivo studies. Our data demonstrated that BIX-combined chemotherapeutic drugs could induce the Bax/caspase-3/GSDME-mediated pyroptosis through the activation of autophagy to enhance the chemosensitivity in NPC.

2005 ◽  
Vol 289 (2) ◽  
pp. L207-L216 ◽  
Author(s):  
Thomas A. Russo ◽  
Bruce A. Davidson ◽  
Stacy A. Genagon ◽  
Natalie M. Warholic ◽  
Ulrike MacDonald ◽  
...  

Enteric gram-negative bacilli, such as Escherichia coli are the most common cause of nosocomial pneumonia. In this study a wild-type extraintestinal pathogenic strain of E. coli (ExPEC)(CP9) and isogenic derivatives deficient in hemolysin (Hly) and cytotoxic necrotizing factor (CNF) were assessed in vitro and in a rat model of gram-negative pneumonia to test the hypothesis that these virulence factors induce neutrophil apoptosis and/or necrosis/lysis. As ascertained by in vitro caspase-3/7 and LDH activities and neutrophil morphology, Hly mediated neutrophil apoptosis at lower E. coli titers (1 × 105–6cfu) and necrosis/lysis at higher titers (≥1 × 107cfu). Data suggest that CNF promotes apoptosis but not necrosis or lysis. We also demonstrate that annexin V/7-amino-actinomycin D staining was an unreliable assessment of apoptosis using live E. coli. The use of caspase-3/7 and LDH activities and neutrophil morphology supported the notion that necrosis, not apoptosis, was the primary mechanism by which neutrophils were affected in our in vivo gram-negative pneumonia model using live E. coli. In addition, in vivo studies demonstrated that Hly mediates lung injury. Neutrophil necrosis was not observed when animals were challenged with purified lipopolysaccharide, demonstrating the importance of using live bacteria. These findings establish that Hly contributes to ExPEC virulence by mediating neutrophil toxicity, with necrosis/lysis being the dominant effect of Hly on neutrophils in vivo and by lung injury. Whether Hly-mediated lung injury is due to neutrophil necrosis, a direct effect of Hly, or both is unclear.


2020 ◽  
Author(s):  
zhichao xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets were detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro . Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo , as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro . Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo . This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qingsong Cao ◽  
Jie Zhang ◽  
Tao Zhang

Nasopharyngeal carcinoma (NPC) is a head and neck tumor with high degree of malignancy and with high incidence especially in southern China. AIMP2-DX2, one isoform of the aminoacyl-tRNA synthetase interacting multifunctional proteins (AIMPs), is shown to be a potential target in many cancers. However, the detailed mechanisms of AIMP2-DX2 in NPC development remain to be elucidated. Here, we found that the mRNA expression level of AIMP2-DX2 was significantly increased in NPC specimens, compared with normal nasopharyngeal tissues. Microarray immunohistochemical analysis of NPC specimens and Kaplan–Meier analysis showed that patients with high AIMP2-DX2 protein expression had shorter overall survival than those with low AIMP2-DX2 level. Furthermore, mRNA and protein expression levels of AIMP2-DX2 were both increased in cultured NPC cell lines (5-8F, CNE-2Z, and CNE-1), by being compared with normal nasopharyngeal cell line NP69. Overexpression of AIMP2-DX2 remarkably promoted the cell viability, cell migration, and invasion of cultured NPC cells. Genetic knockdown of AIMP2-DX2 by shRNA lentiviruses significantly suppressed the proliferation, migration, and invasion and induced apoptosis of NPC cells. Inhibition of AIMP2-DX2 decreased the highly expressed level of matrix metalloproteinase- (MMP-) 2 and MMP-9, further suppressed proliferation, migration, and invasion in cultured NPC cells in vitro, and inhibited tumor growth in a xenograft mouse model in vivo. Taken together, these results suggest that AIMP2-DX2 plays an important role in the regulation of NPC and could be a potential therapeutic target and prognostic indicator for the treatment of NPC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huibo Dai ◽  
Bangyun Ma ◽  
Xingbin Dai ◽  
Jie Pang ◽  
Jingyu Wang ◽  
...  

Shengma Biejia decoction (SMBJD), a traditional Chinese formula recorded in the Golden Chamber, has been widely used for the treatment of malignant tumors. However, its underlying molecular targets and mechanisms are still unclear. This study showed that SMBJD inhibited tumor growth and stimulated hemogram recovery significantly in a multiple myeloma xenograft model. Western blot and immunohistochemistry assays of tumor tissues showed that SMBJD reduced the ratio of autophagy-related proteins LC3-II/LC3-I, while P62 and apoptosis-related proteins cleaved caspase-3/caspase-3 and Bax/Bcl-2 were upregulated. In vitro experiments demonstrated the time-dependent and dose-dependent cytotoxicity of SMBJD on multiple myeloma cell lines H929 and U266 through MTT assays. The LC3-II/LC3-I ratio and number of GFP-LC3 puncta showed that SMBJD inhibited the autophagy process of H929 and U266 cells. Moreover, both SMBJD and 3-methyladenine (3-MA) caused a decrease in LC3-II/LC3-I, and SMBJD could not reverse the upregulation of LC3-II/LC3-I caused by bafilomycin A1 (Baf-A1). Furthermore, the results of annexin V-FITC and propidium iodide double staining demonstrated that SMBJD treatment induced the apoptosis of H929 and U266 cells. These data prove that SMBJD inhibits autophagy and promotes apoptosis in H929 and U266 cells. The results also show that rapamycin could reduce the rate of SMBJD-induced apoptosis in H929 and U266 cells, at a concentration which had no effect on apoptosis but activated autophagy. In addition, analysis of the mechanism indicated that levels of phosphorylated ERK and phosphorylated mTOR were increased by treatment with SMBJD in vivo and in vitro. These results indicate that SMBJD, an old and effective herbal compound, could inhibit the viability of H929 and U266 cells and induce autophagy-mediated apoptosis through the ERK/mTOR pathway. Thus, it represents a potential therapy strategy for multiple myeloma.


2004 ◽  
Vol 36 (3) ◽  
pp. 199-205
Author(s):  
Min Zhang ◽  
Fang Liu ◽  
Wei He ◽  
Yong You ◽  
Ping Zou ◽  
...  

Abstract To detect a new and more effective way against apoptosis mouse lymphomatic cell line-Yac-1 in which fas gene was expressed highly was used as a model for studying the effects of anti-Fas ribozyme on Fas-mediated apoptosis. A hammerhead ribozyme gene targeting the fas mRNA was synthesized and its in vitro transcription vector was constructed, which was transfected into Yac-1 cells using electroporation. Rz596 expression was detected using RT-PCR, and Fas expression in Yac-1 cells was detected using RT-PCR, Western blot and flow cytometry. After treated with anti-Fas antibody (JO2), Yac-1 cell viability was measured with MTT assay, caspase-3 proteolytic activity was detected, and cell apoptosis was measured according to annexin V apoptosis detecting kit. Anti-Fas ribozyme could cleave fas mRNA efficiently in vivo and in vitro. Fas expression in Yac-1 cells transfected with anti-Fas ribozyme was decreased remarkably and correlated with resistance to Fas-mediated apoptosis as determined by flow cytometry and caspase-3 proteolytic activity. Anti-Fas ribozyme was detected in cells transfected with pU6-RZ596 and pU6-dRZ596 and could remarkably decrease the Fas expression in Yac-1 cells, which made Yac-1 cells get rid of Fas-mediated apoptosis. Because of wide expression of fas in organs and tissues, our research was very useful for studying the inhibition of apoptosis of many organs and tissues in the future.


2010 ◽  
Vol 29 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Wei Zhu ◽  
Wenxue Li ◽  
Guangyu Yang ◽  
Quanxin Zhang ◽  
Ming Li ◽  
...  

This study explored the effects of indole-3-carbinol on the proliferation of human nasopharyngeal carcinoma, both in vitro and in vivo, and the underlying mechanisms in inducing apoptosis of CNE1 cells. Proliferation, apoptosis, malondialdehyde, superoxide dismutase, glutathione peroxidase, expressions of caspase-9, and caspase-3 in human nasopharyngeal carcinoma cells CNE1 were examined. Indole-3-carbinol suppressed proliferation, induced apoptosis, decreased malondialdehyde level, increased the activity of superoxide dismutase and glutathione peroxidase, and up-regulated the expression of active fragments of caspase-9 and caspase-3 both in vitro and in vivo. It was concluded that indole-3-carbinol could inhibit proliferation and induce apoptosis of CNE1 cells and inhibit tumor growth in mice. Increased activity of superoxide dismutase and glutathione peroxidase and activated expression of caspase-9 and caspase-3 were also observed in indole-3-carbinol–treated tumors or tumor cells, suggesting that stress- and apoptosis-related molecules are involved in the indole-3-carbinol–induced apoptosis and inhibition of tumor growth.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 802-802
Author(s):  
Dale J. Christensen ◽  
Karen M. Bond ◽  
Alicia D. Volkheimer ◽  
Jessica Oddo ◽  
Youwei Chen ◽  
...  

Abstract Abstract 802 Background and Significance: Even though we have treatments for CLL, it remains an incurable leukemia. We need new and better treatments for this disease. The Akt kinase is usually constitutively activated (phosphorylated) in CLL, and it acts to maintain CLL cell viability. The tumor suppressor protein phosphatase 2A is important in deactivation of Akt, the mitogen activated protein kinases (MAPK) p38, JNK, ERK, and NFkB (through IkK). We developed apoE-mimetic peptides that potently decrease phosphorylation of Akt and MAPKs, decrease TNF and nitric oxide synthase expression, and display anti-inflammatory activity in vitro and in vivo by antagonism of SET, a potent physiological inhibitor of PP2A. Others have reported that PP2A activity is reduced and that SET is overexpressed in cells of chronic myelocytic leukemia patients. Increased SET expression with consequent decreased PP2A activity leads to dysregulated kinase signaling. We show here that SET is also overexpressed in CLL cells, and that SET antagonist apoE-mimetic peptides kill CLL cells. Methods: Patients were from the Duke University and V.A. Medical Centers, and normal controls were from the community. Control normal PBMC were isolated by ficoll-Hypaque centrifugation, and CD19+ CLL or normal B cells were purified using negative selection with antibodies. We determined cytotoxicity using the MTS colorimetric assay. ApoE-mimetic peptides were prepared by chemical synthesis. Western blotting was used with anti-SET and anti-beta-actin antibodies. Apoptosis assays were performed with the annexin-V:propidium iodide staining method. Results: Samples from 17 CLL patients and 5 normal volunteers were examined by Western blotting. SET protein levels were 6.2-fold higher in CLL cells than in normal B cells. The apoE-mimetic COG compounds are peptides of 17 to 34 amino acids derived from the ligand-binding region of the apolipoprotein E holoprotein, and they act by binding to SET and preventing the inhibition of PP2A. This results in a net increase in PP2A activity in CLL cells. We have examined 11 COG peptides. Each of the 11 peptides displayed some cytotoxicity for CLL cells in vitro, irrespective of the patients' stages and other good or bad prognostic findings. 12 of 17 CLL patients were Rai stage 0 at presentation, and 5 were stage 1 or 2. They had been followed 4.2 yr (median; range 1.0 – 24.1 yr). 2 of 16 were CD38 positive, and 6 of 15 were Zap-70 positive. Of 15 analyzed, 6 had unmutated IgVH gene. 11 of 17 patients had not been treated. Peptide COG449 was the most potent, while a control peptide with an inverted apoE sequence had no activity. COG449 induced cell death in a dose-dependent fashion in all patients' samples, with a mean ED50 of 80 nM. The ED50 of COG449 for normal B cells was very high (> 10,000 nM). Annexin-V staining indicated that apoptosis was induced at concentrations in good agreement with the ED50 for cytotoxicity of the compounds tested. In vivo studies in normal mice using COG449 show no toxicity even at doses of 100 mg/kg when delivered by subcutaneous injection. Conclusions: We demonstrated SET overexpression in CLL cells and that apoE-mimetic peptides bind SET to de-inhibit PP2A. This results in apoptosis and death of CLL cells in vitro with high efficacy and potency (low nanomolar ED50s). CLL cells are killed preferentially compared to normal PBMC and B cells. Preliminary studies show that the peptide is nontoxic in normal mice. Trials in CLL patients will help determine the efficacy in vivo. Disclosures: Christensen: Cognosci Inc.: Employment. Oddo:Cognosci Inc.: Employment. Vitek:Cognosci Inc.: Employment, Equity Ownership.


Author(s):  
Zhichao Xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Lin Jia ◽  
Chanping You ◽  
...  

Abstract Background Recent genomic analyses revealed that druggable molecule targets were only detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro. Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo, as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro. Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo. This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


2004 ◽  
Vol 287 (3) ◽  
pp. F543-F549 ◽  
Author(s):  
Istvan Arany ◽  
Judit K. Megyesi ◽  
Hideaki Kaneto ◽  
Peter M. Price ◽  
Robert L. Safirstein

Cisplatin treatment induces extensive death of the proximal tubules in mice. We also demonstrated that treatment of immortalized mouse proximal tubule cells (TKPTS) with 25 μM cisplatin induces apoptotic death in vitro. Here, we demonstrate that members of the MAPKs such as ERK, JNK, and p38 are all activated after cisplatin treatment both in vivo and in vitro. Because MAPKs mediate cell survival and death, we studied their role in cisplatin-induced cell death in vitro. Apoptosis was confirmed by cell morphology, fluorescence-activated cell-sorting analysis, annexin V/propidium iodide binding, and caspase-3 activation in TKPTS cells. Inhibition of ERK, but not JNK or p38, abolished caspase-3 activation and apoptotic death, suggesting a prodeath role of ERK in cisplatin-induced injury. We also determined that cisplatin-induced ERK as well as caspase-3 activation are epidermal growth factor receptor (EGFR) and c- src dependent because inhibition of these genes inhibited ERK and caspase-3 activation and attenuated apoptotic death. These results suggest that caspase-3 mediates cisplatin-induced cell death in TKPTS cells via an EGFR/src/ERK-dependent pathway. We also suggest that the prodeath effect of ERK is injury type dependent because during oxidant injury, ERK supports survival rather than death in the same cells. We propose that injury-specific outcome diverges downstream from ERK in cisplatin- or H2O2-mediated cell survival and death.


2011 ◽  
Vol 300 (5) ◽  
pp. H1696-H1706 ◽  
Author(s):  
Rebecca K. Harston ◽  
John C. McKillop ◽  
Phillip C. Moschella ◽  
An Van Laer ◽  
Lakeya S. Quinones ◽  
...  

Ubiquitin-mediated protein degradation is necessary for both increased ventricular mass and survival signaling for compensated hypertrophy in pressure-overloaded (PO) myocardium. Another molecular keystone involved in the hypertrophic growth process is the mammalian target of rapamycin (mTOR), which forms two distinct functional complexes: mTORC1 that activates p70S6 kinase-1 to enhance protein synthesis and mTORC2 that activates Akt to promote cell survival. Independent studies in animal models show that rapamycin treatment that alters mTOR complexes also reduces hypertrophic growth and increases lifespan by an unknown mechanism. We tested whether the ubiquitin-mediated regulation of growth and survival in hypertrophic myocardium is linked to the mTOR pathway. For in vivo studies, right ventricle PO in rats was conducted by pulmonary artery banding; the normally loaded left ventricle served as an internal control. Rapamycin (0.75 mg/kg per day) or vehicle alone was administered intraperitoneally for 3 days or 2 wk. Immunoblot and immunofluorescence imaging showed that the level of ubiquitylated proteins in cardiomyocytes that increased following 48 h of PO was enhanced by rapamycin. Rapamycin pretreatment also significantly increased PO-induced Akt phosphorylation at S473, a finding confirmed in cardiomyocytes in vitro to be downstream of mTORC2. Analysis of prosurvival signaling in vivo showed that rapamycin increased PO-induced degradation of phosphorylated inhibitor of κB, enhanced expression of cellular inhibitor of apoptosis protein 1, and decreased active caspase-3. Long-term rapamycin treatment in 2-wk PO myocardium blunted hypertrophy, improved contractile function, and reduced caspase-3 and calpain activation. These data indicate potential cardioprotective benefits of rapamycin in PO hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document