Protection properties of stuffed corrugated sandwich structures under hypervelocity impact: Numerical simulation

2017 ◽  
Vol 21 (2) ◽  
pp. 532-551 ◽  
Author(s):  
Hao Zhou ◽  
Rui Guo ◽  
Rongzhong Liu

The stuffed corrugated sandwich structure was proposed for the application in the protection of the spacecraft against orbital debris. In order to investigate the protection properties of the stuffed corrugated sandwich structure under hypervelocity impact, numerical simulations were carried out to analyze the impact characteristics. The hypervelocity impact process was presented and the properties such as shock waves propagation, energy absorption, and expansion of the debris cloud were discussed; corresponding properties of mass equal Whipple structure under impact were analyzed for comparison. The results illustrate the protection mechanism of the stuffed corrugated sandwich subject to hypervelocity impact and show that it has superior protection performance to monolithic plate, which prove that the stuffed corrugated sandwich structure has potentially broad application prospect in the field of spacecraft protection against the orbital debris. The research can provide reference for the design of protection shield of the spacecraft.

2012 ◽  
Vol 525-526 ◽  
pp. 401-404
Author(s):  
Gong Shun Guan ◽  
Rui Tao Niu

In order to study the fragmentation of projectile and ejection of debris clouds caused by hypervelocity impacting mesh bumper, simulation of aluminum sphere projectile hypervelocity normal impacting aluminum mesh bumper was practiced with SPH arithmetic of LS-DYNA soft. The diameter of projectile was 4mm. Impact velocities of aluminum spheres were varied between 2.2km/s and 6.2km/s. The impact angle was 0°. The relationship between the debris clouds characteristic of projectile and the impact position on aluminum mesh bumper was studied. The effect on fragmentation of projectile from different combination mode of aluminum mesh bumper was analyzed. The results showed that the morphologies of the debris cloud varied with the impact position when a projectile impacted the mesh bumper. The debris clouds as palpus was found, and some local kinetic energy concentrated appeared in the debris clouds. Debris clouds distribution was more uniform when projectile impacted wire across point on the mesh bumper. Debris clouds had more diffuse area and less residual kinetic energy when mesh bumper was combined with interleaving mode. Mesh bumper combined with interleaving mode was helpful in enhancing the protection performance of shields.


Author(s):  
J. Zhao ◽  
F. Tan ◽  
C. Liu ◽  
C. Sun

The near-earth space environment is cluttered with man-made debris and naturally occurring meteoroids, which is a big menace to the safety of satellites and spacecrafts. This paper is addressed on the failure response of aluminum shields under hypervelocity impact of milligrame level flyer. A compacted electric gun is employed to accelerate a mylar flyer up to 10 km/s. Failure response of Ly12 aluminum shields with different thickness and layers impacted by mylar flyer with different velocities is under investigation. The spallation is observed in the rear free surface of 4 mm thick monolithic aluminum shield, and its fracture mechanism changes from plastic to brittle when loading pressure is above 13 GPa. A perforation with a diameter 8 mm in the impacted area of the 4mm thick Ly12 shield is observed after which is impacted by 0.1 mm thick mylar flyer 8mm in diameter with velocity 8.2 km/s. When three layers of shields are impacted, the debris clouds (DC) are observed in the first and the second spaces respectively during the impact process by high speed camera, and its leftover can be observed on the surface of the third plate. The shape of the first debris cloud head is a little flat, and its speed of lateral expansion is very slow, which is different from those impacted by spherical projectile, and its formation mechanics mainly attributes to multi-spallations based on the analysis of simulation.


2012 ◽  
Vol 457-458 ◽  
pp. 108-112
Author(s):  
Min Lin ◽  
Bao Jun Pang ◽  
Jin Cheng

In order to systematically explore the properties of the mesh bumper under hypervelocity impact, the quantitative research of protect characteristics was carried out with the numerical simulation. The experiments, in which the projectile impacted the multi-layers mesh bumper at hypervelocity, were simulated using the Ls-Dyna hydro-codes. The results for simulations and experiments were compared and analyzed. The effectiveness and accuracy of the simulation model is proved. It is shown that the morphologies of debris cloud were obviously varied with the change of impact position.


Author(s):  
Emma-Jane Goode ◽  
Eirian Thomas ◽  
Owen Landeg ◽  
Raquel Duarte-Davidson ◽  
Lisbeth Hall ◽  
...  

AbstractEvery year, numerous environmental disasters and emergencies occur across the globe with far-reaching impacts on human health and the environment. The ability to rapidly assess an environmental emergency to mitigate potential risks and impacts is paramount. However, collating the necessary evidence in the early stages of an emergency to conduct a robust risk assessment is a major challenge. This article presents a methodology developed to help assess the risks and impacts during the early stages of such incidents, primarily to support the European Union Civil Protection Mechanism but also the wider global community in the response to environmental emergencies. An online rapid risk and impact assessment tool has also been developed to promote enhanced collaboration between experts who are working remotely, considering the impact of a disaster on the environment and public health in the short, medium, and long terms. The methodology developed can support the appropriate selection of experts and assets to be deployed to affected regions to ensure that potential public health and environmental risks and impacts are mitigated whenever possible. This methodology will aid defensible decision making, communication, planning, and risk management, and presents a harmonized understanding of the associated impacts of an environmental emergency.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Anthonysamy John Christopher ◽  
Nanjundan Magesh ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Ravikumar Shashikala Varun Kumar

2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


Author(s):  
Qing-Ming Zhang ◽  
Y. H. Chen ◽  
F. L. Huang ◽  
Z. Z. Gong

AbstractFor describing the dynamic evolution of debris cloud formed in oblique hypervelocity impact, a model (expressed in polar coordinates) for the shape, the velocity distribution and the mass distribution is developed according to the results of experiments and numerical simulation, and parameters of the Model are identified by nonlinear integral equations which are derived from mass conservation law and energy conservation law. Afterwards, the model has been verified by another simulation code.


1991 ◽  
Vol 11 (12) ◽  
pp. 29-32
Author(s):  
R.C. Reynolds ◽  
P.D. Anz-Meador ◽  
G.W. Ojakangas

Sign in / Sign up

Export Citation Format

Share Document