Behaviour of steel–concrete–steel sandwich composite beams with lacing subjected to reversed cyclic loads

2017 ◽  
Vol 21 (6) ◽  
pp. 1799-1819 ◽  
Author(s):  
N Anandavalli ◽  
N Lakshmanan ◽  
J Rajasankar ◽  
GM Samuel Knight

Steel–concrete–steel (SCS) sandwich composite system consists of steel plates covering both sides of the concrete core and connected by mechanical means such as shear connectors. In conventional steel–concrete–steel system, shear connectors are welded to the steel cover plates. Laced steel–concrete composite (LSCC) system is a new form of steel–concrete–steel, proposed earlier by the authors. In LSCC system, steel cover plates are connected in a novel way using lacings and cross rods and hence is devoid of welding. Proposed sandwich composite system is being evaluated systematically for its structural behaviour under various modes of loading for use in special structures under severe loading such as blast loading. Damage under cyclic loading and energy absorption are extremely important, which are highlighted in this paper. An experimental investigation on the cyclic response behaviour of two LSCC beams is carried out. Angle of lacing is the parameter that is varied between the two beams. Both the beams are found to exhibit similar behaviour on most of the aspects. The envelope of hysteretic response indicates mild softening behaviour after reaching peak value. Maximum load resisted under both sagging and hogging moment conditions is found to be nearly equal, thus making the LSCC system suitable for situations where reversal of loads are encountered. Dissipated energy is observed to be nearly the same for the load applied in the upward as well as in the downward direction. Analytical prediction on energy absorption capacity is carried out by adopting a hysteretic model with strength deterioration. Cyclic ductility factor is evaluated to be about 20 for LSCC beams, while support rotation is calculated to be about 8° and 10° for beams with 45° and 60° angles of lacing, respectively. Spalling of concrete is prevented in LSCC beams by the steel cover plates.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Noridah Mohamad ◽  
A. I. Khalil ◽  
A. A. Abdul Samad ◽  
W. I. Goh

This paper presents the structural behaviour of precast lightweight foam concrete sandwich panel (PFLP) under flexure, studied experimentally and theoretically. Four (4) full scale specimens with a double shear steel connector of 6 mm diameter and steel reinforcement of 9 mm diameter were cast and tested. The panel’s structural behavior was studied in the context of its ultimate flexure load, crack pattern, load-deflection profile, and efficiency of shear connectors. Results showed that the ultimate flexure load obtained from the experiment is influenced by the panel’s compressive strength and thickness. The crack pattern recorded in each panel showed the emergence of initial cracks at the midspan which later spread toward the left and right zones of the slab. The theoretical ultimate load for fully composite and noncomposite panels was obtained from the classical equations. All panel specimens were found to behave in a partially composite manner. Panels PLFP-3 and PLFP-4 with higher compressive strength and total thickness managed to obtain a higher degree of compositeness which is 30 and 32.6 percent, respectively.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 77
Author(s):  
Nurul Emi Nor Ain Mohammad ◽  
Aidah Jumahat ◽  
Mohamad Fashan Ghazali

This paper investigates the effect of nanosilica on impact and energy absorption properties of sandwich foam-fibre composites. The materials used in this study are closed-cell aluminum (Al) foam (as the core material) that is sandwiched in between nanomodified basalt fiber reinforced polymer (as the face-sheets). The face sheets were made of Basalt Fibre, nanosilica and epoxy polymer matrix. The sandwich composite structures are known to have the capability of resisting impact loads and good in absorbing energy. The objective of this paper is to determine the influence of closed-cell aluminum foam core and nanosilica filler on impact properties and fracture behavior of basalt fibre reinforced polymer (BFRP) sandwich composites when compared to the conventional glass fibre reinforced polymer (GFRP) sandwich composites. The drop impact tests were carried out to determine the energy absorbed, peak load and the force-deflection behaviour of the sandwich composite structure material. The results showed that the nanomodified BFRP-Al foam core sandwich panel exhibited promising energy absorption properties, corresponding to the highest specific energy absorption value observed. Also, the result indicates that the Aluminium Foam BFRP sandwich composite exhibited higher energy absorption when compared to the Aluminium foam GFRP sandwich composite.  


2019 ◽  
Vol 225 ◽  
pp. 111148 ◽  
Author(s):  
Victor Avisek Chatterjee ◽  
Sanjeev Kumar Verma ◽  
Debarati Bhattacharjee ◽  
Ipsita Biswas ◽  
Swati Neogi

2020 ◽  
Vol 10 (23) ◽  
pp. 8647
Author(s):  
Mansour Ghalehnovi ◽  
Mehdi Yousefi ◽  
Arash Karimipour ◽  
Jorge de Brito ◽  
Mahdi Norooziyan

The most researches on steel-concrete-steel (SCS) sandwich slabs are to control the cracking of concrete core along with losing weight, and shear connector type. In this study, the behaviour of SCS slabs with bi-directional corrugated-strip shear connectors (CSC) was investigated. One of the most important practical problems of CSCs in SCS slabs is lack of access for another end welding to the second steel faceplate. In this research, plug weld was proposed to provide partial welding of the other end of CSCs to a steel plate. For this reason, three slabs were manufactured using the normal concrete core as a control sample and lightweight concrete (LWC) core with and without steel fibres. The behaviour of these slabs was compared with the behaviour of SCS slabs with J-hook and stud bolt connectors from previous researches. The specimens were tested under a concentrated block load as quasi-statically. Based on the load-displacement relationship at the centre, failure modes, loading capacity, energy absorption, and ductility showed acceptable behaviour for CSC system slabs. There was also a good agreement between the ultimate flexural strength based on experiments and previous research relationships.


2006 ◽  
Vol 306-308 ◽  
pp. 739-744 ◽  
Author(s):  
Xiao Dong Cui ◽  
Tao Zeng ◽  
Dai Ning Fang

The impact response and energy absorbing characteristics of laminated, foam sandwich and honeycomb sandwich composites under ballistic impact have been studied in this investigation. An improved model is proposed in this paper to predict the ballistic property of the laminated composites. In this model, the material structures related to fiber lamination angles are designed in terms of their anti-impacting energy absorption capability. The ballistic limit speed and energy absorption per unit thickness of the three composites under different conditions are calculated. It is shown that honeycomb sandwich composite has the best ballistic resistance capability and energy absorption property among the three composites.


2012 ◽  
Vol 602-604 ◽  
pp. 1579-1582
Author(s):  
Marco Valente

This study investigates the influence of partial shear interaction and partial strength beam-to-column joints on the seismic performance of a multi-story composite frame. The moment-rotation relationship of the beam-to-column joints and the force-slip curve of the beam-to-slab connections have been calibrated on the basis of available experimental tests. The results of the numerical investigations show that the energy dissipation of the composite frame increases by reducing the shear connection degree. The shear connection degree has a significant effect on the total dissipated energy in case of rigid joints, whereas in case of partial strength joints the contribution of the joints to the dissipated energy is predominant. Low shear connection degrees can provide a source of dissipated hysteretic energy, above all in case of rigid joints, and can reduce the ductility demand on other parts of a composite frame, such as partial strength beam-to-column joints. However, the shear connection degree should be high enough in order to protect shear connectors from failure.


2020 ◽  
Author(s):  
Abambres M ◽  
He J

<p>Headed studs are commonly used as shear connectors to transfer longitudinal shear force at the interface between steel and concrete in composite structures (e.g., bridge decks). Code-based equations for predicting the shear capacity of headed studs are summarized. An artificial neural network (ANN)-based analytical model is proposed to estimate the shear capacity of headed steel studs. 234 push-out test results from previous published research were collected into a database in order to feed the simulated ANNs. Three parameters were identified as input variables for the prediction of the headed stud shear force at failure, namely the steel stud tensile strength and diameter, and the concrete (cylinder) compressive strength. The proposed ANN-based analytical model yielded, for all collected data, maximum and mean relative errors of 3.3 % and 0.6 %, respectively. Moreover, it was illustrated that, for that data, the neural network approach clearly outperforms the existing code-based equations, which yield mean errors greater than 13 %.</p>


2021 ◽  
Author(s):  
Janani S. Gopu

Composite materials help realize high strength to weight ratio requirements of the Aerospace Industry. Composite structures and sandwich composite structures are susceptible to moisture ingress. Moisture ingress causes degradation of thermo-mechanical properties of the composite panels. Water accumulation in sandwich composite structures causes rapid degradation of face to core bondline, damage of cells frozen water and even blow off skins owing to sudden pressure build up in the cells of the honeycomb structure. Mechanisms of moisture ingress can be broadly classified into direct and indirect mechanisms. Direct ingress occurs through pre-existing pathways formed by defects in the composite system. Indirect mechanisms are diffusion, Capillary actions, Wicking actions, and Osmosis. The first form of damage in FRP materials is microcracking. The rate of microcracking increases with moisture ingress. Microcracking fracture toughness is a material property for the susceptibility of a composite system to the formation of microcracks. This work implores the mechanisms and the fracture mechanics dominating the formation of microcracks.


Sign in / Sign up

Export Citation Format

Share Document