scholarly journals Basic Concepts of Optical Mapping Techniques in Cardiac Electrophysiology

2009 ◽  
Vol 11 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Mina Attin ◽  
William T. Clusin

Optical mapping is a tool used in cardiac electrophysiology to study the heart’s normal rhythm and arrhythmias. The optical mapping technique provides a unique opportunity to obtain membrane potential recordings with a higher temporal and spatial resolution than electrical mapping. Additionally, it allows simultaneous recording of membrane potential and calcium transients in the whole heart. This article presents the basic concepts of optical mapping techniques as an introduction for students and investigators in experimental laboratories unfamiliar with it.

2006 ◽  
Vol 290 (3) ◽  
pp. H1298-H1306 ◽  
Author(s):  
William R. Mills ◽  
Niladri Mal ◽  
Farhad Forudi ◽  
Zoran B. Popovic ◽  
Marc S. Penn ◽  
...  

Late myocardial infarction (MI) is associated with ventricular arrhythmias and sudden cardiac death. The exact mechanistic relationship between abnormal cellular electrophysiology, conduction abnormalities, and arrhythmogenesis associated with late MI is not completely understood. We report a novel, rapid dye superfusion technique to enable whole heart, high-resolution optical mapping of late MI. Optical mapping of action potentials was performed in normal rats and rats with anterior MI 7 days after left anterior descending artery ligation. Hearts from normal rats exhibited normal action potentials and impulse conduction. With the use of programmed stimulation to assess arrhythmia inducibility, 29% of hearts with late MI had inducible sustained ventricular tachycardia, compared with 0% in normal rats. A causal relationship between the site of infarction, abnormal action potential conduction (i.e., block and slow conduction), and arrhythmogenesis was observed. Optical mapping techniques can be used to measure high-resolution action potentials in a whole heart model of late MI. This experimental model reproduces many of the electrophysiological characteristics (i.e., conduction slowing, block, and ventricular tachycardia) associated with MI in patients. Importantly, the results of this study can enhance our ability to understand the interplay between cellular heterogeneity, conduction abnormalities, and arrhythmogenesis associated with MI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manuel Marina-Breysse ◽  
Alba García-Escolano ◽  
Joaquín Vila-García ◽  
Gabriel Reale-Nosei ◽  
José M. Alfonso-Almazán ◽  
...  

Clinicians, biologists, physicists, engineers, and computer scientists are coming together to better understand heart disease, which is currently the leading cause of death globally. Optical mapping, a high-speed fluorescence imaging technique that visualizes and measures key cardiac parameters such as action potentials, cytosolic calcium transients, and fibrillation dynamics, is a core research tool that has arisen from such interdisciplinary collaborations. In an effort to broaden its use, especially among clinical scientists and students, we developed a complete and low-cost optical mapping system, including a constant-flow Langendorff perfusion system, which minimizes the economic threshold to widespread use of this powerful tool in cardiac electrophysiology research. The system described here provides high spatiotemporal resolution data about action potentials, intracellular calcium transients and fibrillation wave dynamics in isolated Langendorff-perfused hearts (pigs and rabbits), relevant for translational research. All system components and software elements are fully disclosed with the aim of increasing the use of this affordable and highly versatile tool among clinicians, basic scientists and students wishing to tackle their own research questions with their own customizable systems.


2001 ◽  
Vol 280 (5) ◽  
pp. H2053-H2060 ◽  
Author(s):  
Kenneth R. Laurita ◽  
Ashish Singal

Intracellular calcium handling plays an important role in cardiac electrophysiology. Using two fluorescent indicators, we developed an optical mapping system that is capable of measuring calcium transients and action potentials at 256 recording sites simultaneously from the intact guinea pig heart. On the basis of in vitro measurements of dye excitation and emission spectra, excitation and emission filters at 515 ± 5 and >695 nm, respectively, were used to measure action potentials with di-4-ANEPPS, and excitation and emission filters at 365 ± 25 and 485 ± 5 nm, respectively, were used to measure calcium transients with indo 1. The percent error due to spectral overlap was small when action potentials were measured (1.7 ± 1.0%, n = 3) and negligible when calcium transients were measured (0%, n = 3). Recordings of calcium transients, action potentials, and isochrone maps of depolarization time and the time of calcium transient onset indicated negligible error due to fluorescence emission overlap. These data demonstrate that the error due to spectral overlap of indo 1 and di-4-ANEPPS is sufficiently small, such that optical mapping techniques can be used to measure calcium transients and action potentials simultaneously in the intact heart.


2012 ◽  
Vol 303 (7) ◽  
pp. H753-H765 ◽  
Author(s):  
Jacob I. Laughner ◽  
Fu Siong Ng ◽  
Matthew S. Sulkin ◽  
R. Martin Arthur ◽  
Igor R. Efimov

Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation.


2007 ◽  
Vol 293 (4) ◽  
pp. H2605-H2611 ◽  
Author(s):  
Shahriar Iravanian ◽  
David J. Christini

Real-time, closed-loop intervention is an emerging experiment-control method that promises to provide invaluable new insight into cardiac electrophysiology. One example is the investigation of closed-loop feedback control of cardiac activity (e.g., alternans) as a possible method of preventing arrhythmia onset. To date, such methods have been investigated only in vitro using microelectrode systems, which are hindered by poor spatial resolution and are not well suited for atrial or ventricular tissue preparations. We have developed a system that uses optical mapping techniques and an electrical stimulator as the sensory and effector arms, respectively, of a closed-loop, real-time control system. The system consists of a 2,048 × 1 pixel line-scan charge-coupled device camera that records optical signals from the tissue. Custom-image processing and control software, which is implemented on top of a hard real-time operation system (RTAI Linux), process the data and make control decisions with a deterministic delay of <1 ms. The system is tested in two ways: 1) it is used to control, in real time, simulated optical signals of electrical alternans; and 2) it uses precisely timed, feedback-controlled initiation of antitachycardia pacing to terminate reentrant arrhythmias in an arterially perfused swine right ventricle stained with voltage-sensitive fluorescent dye 4{β-[2-(di- n-butylamino)-6-napathy]vinyl}pyridinium (di-4-ANEPPS). Thus real-time control of cardiac activity using optical mapping techniques is feasible. Such a system is attractive because it offers greater measurement resolution than the electrode-based systems with which real-time control has been used previously.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
B Ordog ◽  
E.C.A Nyns ◽  
M.S Fontes ◽  
T Van Den Heuvel ◽  
C.I Bart ◽  
...  

Abstract Background Ventricular tachyarrhytmias (VTs) are common among patients suffering from cardiac remodeling and cause significant morbidity and mortality. Current research and treatment options for such VTs are suboptimal, hence new strategies are urgently needed. Optogenetics offers efficacious means to control cardiac rhythm, including shock-free VT termination. However, this has not been demonstrated in diseased hearts in vivo, while clinical translation would not only require such demonstration, but also an in-depth understanding of cellular responses. Purpose To assess the optogenetic response at the cardiac cell, tissue, and whole heart level in terms of rhtyhm control under pathological conditions by an integrative experimental platform including in vitro and in vivo models of cardiac disease. Methods Remodeling was induced in neonatal rat ventricular cardiomyocytes (NRVMs) by phenylephrine (PE) exposure. Pathological conditions leading to ventricular remodeling were mimicked by transverse aortic constriction (TAC) surgery in adult rats. The light-activated ion channel ReaChR was ectopically expressed in NRVMs and in hearts of TAC and sham animals by viral vector-based gene delivery. Results Electrical and structural remodeling was evidenced by elongated action potential durations (p&lt;0.05) and increased cell capacitance (p&lt;0.05) in PE-treated, but not in control cells (CTL). Light-induced ionic currents in ReaChR-expressing PE-treated and CTL NRVMs displayed comparable kinetic properties and current densities (p&gt;0.05). Illumination (1 s) caused a sudden shift in membrane potential leading to a plateau at −7.3 mV for PE-treated and −18.9 mV for CTL cells (p&gt;0.05). Hearts explanted from TAC animals showed increased average heart weight to body weight ratio, ventricular fibrosis and expression of hypertrophy markers (ANP, aSkMA, p&lt;0.05), while tissue preparations showed significant APD increase compared to sham. In vivo gene delivery resulted in expression of the ReaChR-citrine transgene in ∼80% of isolated ventricular myocytes (VMs). Photocurrent densities were not different (p&gt;0.05) in VMs from TAC and sham animals, which currents led to comparable shifts in membrane potential (65.3 mV for TAC and 63.9 mV for CTL). In line with this, illumination caused marked depolarization in tissue preparations (from −77.6 to −16.4 mV) in TAC animals as assessed by conventional sharp electrode measurements. Importantly, as anticipated, electrically-induced VT episodes could be terminated in open chest experiments in TAC animals (n=6; 76.3% of cases) by epicardial illumination in vivo. Conclusions Key operational parameters of the optogenetic response remained unaffected in models of cardiac disease, which allowed efficacious optogenetic VT termination in the diseased rat heart exhibiting structural and electrical remodeling. These findings corroborate the translational potential of shock-free therapy of cardiac arrhythmia by optogenetics. Funding Acknowledgement Type of funding source: Public grant(s) – EU funding. Main funding source(s): This work was supported by personal funding from the Netherlands Organization for Scientific Research (NWO, Vidi grant 1714336 to D.A.P.). D.A.P. is also a recipient of the European Research Council (ERC), Starting grant (716509). Additional support was provided by the Netherlands Heart Institute (ICIN grant 230.148-04 to A.A.F.d.V.).


2021 ◽  
Author(s):  
Tomas Prudencio ◽  
Luther Swift ◽  
Devon Guerrelli ◽  
Blake Cooper ◽  
Marissa Reilly ◽  
...  

ABSTRACTBackgroundBisphenol A (BPA) is a high-production volume chemical that is commonly used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened BPA exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA.ObjectiveThis study aimed to examine the direct nongenomic effects of BPA on cardiac electrophysiology and compare its safety profile to recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F).MethodsWhole-cell voltage-clamp recordings were performed on cell lines transfected with Nav1.5, hERG, or Cav1.2. Results of single channel experiments were validated by conducting electrophysiology studies on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole heart preparations.ResultsOf the chemicals tested, BPA was the most potent inhibitor of both fast (INa-P) and late (INa-L) sodium channel (IC50 = 55.3 and 23.6 μM, respectively), L-type calcium channel (IC50 = 30.8 μM) and hERG channel current (IC50 = 127 μM). The inhibitory effects of BPA and BPF on L-type calcium channels were supported by microelectrode array recordings, which revealed shortening of the extracellular field potential (akin to QT interval). Further, BPA and BPF exposure impaired atrioventricular conduction in intact, whole heart experiments. BPS did not alter any of the cardiac electrophysiology parameters tested.DiscussionResults of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, and that BPS may be a safer alternative. Intracellular signaling or genomic effects of bisphenol analogues were not investigated; therefore, additional mechanistic studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.


2015 ◽  
Vol 4 (1) ◽  
pp. 19 ◽  
Author(s):  
Emmanuel Koutalas ◽  
Sascha Rolf ◽  
Borislav Dinov ◽  
Sergio Richter ◽  
Arash Arya ◽  
...  

Cardiac electrophysiology has moved a long way forward during recent decades in the comprehension and treatment of complex cardiac arrhythmias. Contemporary electroanatomical mapping systems, along with state-of-the-art technology in the manufacture of electrophysiology catheters and cardiac imaging modalities, have significantly enriched our armamentarium, enabling the implementation of various mapping strategies and techniques in electrophysiology procedures. Beyond conventional mapping strategies, ablation of complex fractionated electrograms and rotor ablation in atrial fibrillation ablation procedures, the identification and modification of the underlying arrhythmogenic substrate has emerged as a strategy that leads to improved outcomes. Arrhythmogenic substrate modification also has a major role in ventricular tachycardia ablation procedures. Optimisation of contact between tissue and catheter and image integration are a further step forward to augment our precision and effectiveness. Hybridisation of existing technologies with a reasonable cost should be our goal over the next few years.


Author(s):  
Haw Su-Cheng ◽  
Emyliana Song ◽  
Nur Amirah Azhar ◽  
Aisyah Amin

<span>XML has emerged as the standard for information representation over the Internet. However, most enterprises today have long secured the use of relational databases. Thus, it is crucial to map XML data into relational data to provide seamless integration between these database infrastructures. Many mapping techniques have been proposed, yet, none has provides a unified view on these techniques. Ultimately, understanding how these techniques work is important especially if one needs to decide which technique to adopt in their organization. This paper (i) reviews on some existing model-based mapping schemes focusing on how the mapping technique works, the advantages and the disadvantages, (ii) present the simulation engine to evaluate the performance of selected mapping schemes, (iii) highlight the future direction of the related area.</span>


2020 ◽  
Vol 318 (2) ◽  
pp. H354-H365 ◽  
Author(s):  
Luther M. Swift ◽  
Morgan Burke ◽  
Devon Guerrelli ◽  
Marissa Reilly ◽  
Manelle Ramadan ◽  
...  

Rodent models are frequently employed in cardiovascular research, yet our understanding of pediatric cardiac physiology has largely been deduced from more simplified two-dimensional cell studies. Previous studies have shown that postnatal development includes an alteration in the expression of genes and proteins involved in cell coupling, ion channels, and intracellular calcium handling. Accordingly, we hypothesized that postnatal cell maturation is likely to lead to dynamic alterations in whole heart electrophysiology and calcium handling. To test this hypothesis, we employed multiparametric imaging and electrophysiological techniques to quantify developmental changes from neonate to adult. In vivo electrocardiograms were collected to assess changes in heart rate, variability, and atrioventricular conduction (Sprague-Dawley rats). Intact, whole hearts were transferred to a Langendorff-perfusion system for multiparametric imaging (voltage, calcium). Optical mapping was performed in conjunction with an electrophysiology study to assess cardiac dynamics throughout development. Postnatal age was associated with an increase in the heart rate (181 ± 34 vs. 429 ± 13 beats/min), faster atrioventricular conduction (94 ± 13 vs. 46 ± 3 ms), shortened action potentials (APD80: 113 ± 18 vs. 60 ± 17 ms), and decreased ventricular refractoriness (VERP: 157 ± 45 vs. 57 ± 14 ms; neonatal vs. adults, means ± SD, P < 0.05). Calcium handling matured with development, resulting in shortened calcium transient durations (168 ± 18 vs. 117 ± 14 ms) and decreased propensity for calcium transient alternans (160 ± 18- vs. 99 ± 11-ms cycle length threshold; neonatal vs. adults, mean ± SD, P < 0.05). Results of this study can serve as a comprehensive baseline for future studies focused on pediatric disease modeling and/or preclinical testing. NEW & NOTEWORTHY This is the first study to assess cardiac electrophysiology and calcium handling throughout postnatal development, using both in vivo and whole heart models.


Sign in / Sign up

Export Citation Format

Share Document