Theoretical analysis and experimental studies on torque friction in magnetic fluid seals

Author(s):  
Marcin Szczęch

Magnetic fluid seals are among the most common applications of ferrofluids. In such seals, the torque friction results only from the internal friction in the fluid and there is no direct contact between seal elements. Despite this, the heat generated during operation can be significant due to the low volume of the ferrofluid in the seal and high rotational speeds. The difficulty in calculating the torque friction is because the ferrofluid is a non-Newtonian fluid and changes its viscosity under the influence of a magnetic field. In order to measure torque friction in magnetic fluid seals, a special test stand was built. Tests were performed at different rotation speeds, different temperatures, and two seal stage geometries (rectangle and trapezoid). Numerical simulations were performed to determine the magnetic field distribution in the seal. Dynamic viscosity under the influence of the magnetic field was measured on a rotary rheometer. Mathematical models were compared with laboratory results. The results obtained from the calculations in some cases gave overstated values almost twice in value. An additional correction in the case of ferrofluid viscosity is proposed.

Author(s):  
Skumiel Andrzej

The article describes the necessary conditions for the phenomenon of thermal energy release in a magnetic fluid placed in a high-frequency rotating magnetic field. The minimum amplitude of the magnetic field was calculated and the thermal power released (by the rotating spherical nanoparticles in the viscous medium) was estimated. The estimations were based on the assumption that the magnetic relaxation times (τN and τB) and the magnetic field rotation period (τrot) meet the condition: τN>>τrot>>τB. The principle of operation and construction of the device generating a high-frequency rotating magnetic field is described. Preliminary experimental studies were carried out using a magnetic fluid with magnetite nanoparticles that indicated magnetic relaxation as the cause of the released heat. The value of the absorption rate in the experiment and its dependence on the strength of the magnetic field were determined.


2018 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Anup Kumar ◽  
Prakash Mondal ◽  
Claudio Fontanesi

Magneto-electrochemistry (MEC) is a unique paradigm in science, where electrochemical experiments are carried out as a function of an applied magnetic field, creating a new horizon of potential scientific interest and technological applications. Over time, detailed understanding of this research domain was developed to identify and rationalize the possible effects exerted by a magnetic field on the various microscopic processes occurring in an electrochemical system. Notably, until a few years ago, the role of spin was not taken into account in the field of magneto-electrochemistry. Remarkably, recent experimental studies reveal that electron transmission through chiral molecules is spin selective and this effect has been referred to as the chiral-induced spin selectivity (CISS) effect. Spin-dependent electrochemistry originates from the implementation of the CISS effect in electrochemistry, where the magnetic field is used to obtain spin-polarized currents (using ferromagnetic electrodes) or, conversely, a magnetic field is obtained as the result of spin accumulation.


2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


Author(s):  
Kenichi Kamioka ◽  
Ryuichiro Yamane

The experiments are conducted on the magnetic fluid flow induced by the multi-pole rotating magnetic field in a circular cylinder. The numbers of poles are two, four, six, eight and twelve. The applied electric current and frequency are 2∼6 A and 20∼60 Hz, respectively. The peak velocity of the flow increases with the increase in the strength and the phase velocity of the magnetic field. As the increase in the number of poles, the flow shifts to the outer periphery.


2012 ◽  
Vol 503 ◽  
pp. 3-7
Author(s):  
Meng Zhao ◽  
Ji Bin Zou ◽  
Jing Shang

According to researching the spin traveling wave pump, the relationship of the characteristics of magnetic fluid and the press is investigated under the spin magnetic field by the theory method. The relationship of moving, magnetic field and press is investigated by the decoupled computation between the magnetic field and force. The method is scientificity and rationality by the testing. The distributing shape of magnetic fluid in the pump is affected by the adding magnetic field under the spin magnetic field when the magnetic fluid is filled in the pump. At the same time, the adding magnetic field is affected by magnetic particles of magnetic fluid. The magnetic fluid can be moved by the effect of the adding magnetic field in the pump. The flux of magnetic fluid increases with the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document