Influence of surface textures on the dynamic stability and performance parameters of hydrodynamic two-lobe journal bearings

Author(s):  
Niranjan Singh ◽  
R K Awasthi

Surface texturing can improve the performance of journal bearing system. The present study theoretically investigates the impact of surface textures on the dynamic stability and performance parameters of two-lobe journal bearing system. Galerkin's finite element method is used to solve the Reynolds equation governing the flow of lubricant in the gap between the bearing and the journal. Reynolds boundary conditions are applied in the simulation study of plain, full-textured, partially textured-I and partially textured-II configurations of two-lobe journal bearing. The dynamic stability and performance parameters of textured two-lobe journal bearings are computed with the variation of eccentricity ratio and dimple depth and compared with circular bearing results. The results indicate that the existence of surface textures in the pressure build-up zone ranging from 126°–286° and at unity dimple aspect ratio can significantly improve the dynamic stability and performance parameters of two-lobe bearing system.

2017 ◽  
Vol 69 (6) ◽  
pp. 844-862 ◽  
Author(s):  
Chandra B. Khatri ◽  
Satish C. Sharma

Purpose The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing. Design/methodology/approach In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique. Findings The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing. Originality/value The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.


Author(s):  
Niranjan Singh ◽  
RK Awasthi

In the present work, theoretical investigation has been performed to predict the influence of spherical textures on the performance characteristics of two-lobe journal bearing system. The flow of lubricant in the clearance space between the bearing and the journal is governed by the Reynolds equation assuming the flow is Newtonian and isoviscous. The Reynolds equation is solved using a finite element method and the static performance parameters of circular/two-lobe smooth/textured journal bearing system have been computed with variation in eccentricity ratio, dimple depth and its location. The numerically simulated results reveal that the partial surface texturing can provide better performance when the textures are created in the pressure build-up region of 126°–286° and the dimple aspect ratio is nearly 1.0.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
H. C. Garg ◽  
Vijay Kumar ◽  
H. B. Sharda

The effect of viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on the performance of hole-entry and slot-entry hybrid journal bearings system is the focus of this investigation. The performance characteristics of nonrecessed hybrid journal bearings operating with different flow controlling devices, i.e., constant flow valve, capillary, orifice, and slot restrictors, have been compared. Finite element method has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation, energy equation and conduction equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The results indicate that variation in viscosity due to rise in temperature and non-Newtonian behavior of the lubricant affects the performance of nonrecessed hybrid journal bearing system quite significantly. The results further indicate that bearing performance can be improved by selecting a particular bearing configuration in conjunction with a suitable compensating device.


Author(s):  
Niranjan Singh ◽  
RK Awasthi

This paper concerns with theoretical investigation to predict the influence of cylindrical textures on the static and dynamic performance characteristics of hydrodynamic journal bearing system and the performance is compared with smooth surface bearing. The Reynolds equation governing the fluid–film between the journal and the bearing surface is solved numerically with the assistance of finite element method and the performance characteristics are evaluated as a function of eccentricity ratio, dimple depth and its location. In this study, four journal bearing configurations viz: smooth (non-textured), full-textured, partially textured-I, and partially textured-II are considered for the evaluation of theoretical results. The simulated results indicate that the influence of surface textures is more significant when the textures were created in upstream zone of 126°–286° and dimple aspect ratio nearly 1.0.


Author(s):  
T. Nagaraju ◽  
J. Sharana Basavaraja ◽  
Satish C. Sharma ◽  
S. C. Jain

The hydrostatic and hybrid journal bearings are finding increasing applications due to their excellent characteristics. The non-recessed hydrostatic/hybrid journal bearings have been developed so to provide an improved performance over the recessed/pocketed hydrostatic/hybrid journal bearings. The stability and unsteady behavior of the journal bearings is greatly influenced by bearing geometry, and accordingly various designs have been used by designers to achieve the desired objective. The non-circular journal bearings i.e. the multilobe journal bearing exhibits better stability as well as a superior capability to suppress whirl. In the present paper a theoretical study pertaining to a novel journal bearing configuration i.e. two-lobe hole-entry hybrid journal bearing is being presented. The work presented in this paper aims to study the performance of a two-lobe hole-entry hybrid journal bearing system compensated by a orifice restrictors. The Reynolds equation governing the flow of lubricant in the clearance space between the journal and bearing together with the equation of flow through an orifice restrictor has been solved using FEM and Galerkin’s method. The bearing performance characteristics results have been simulated for an orifice compensated non-recessed two-lobe hole-entry hybrid journal bearing symmetric configuration for the various values of offset factor (δ), restrictor design parameter (cS2) and the value external load (Wo). Further, a comparative study of the performance of a two-lobe non-recessed hole-entry hybrid journal bearing system vis a vis circular hole-entry symmetric hybrid journal bearing system have also been carried out so that a designer has a better flexibility in choosing a suitable bearing configuration. The simulated numerical results for the non-recessed two-lobe symmetric hole-entry hybrid journal bearing system with an offset factor (δ) greater than one indicates a significant improvement of the order of 30 to 50 percent in the values of direct stiffness and direct damping coefficients as compared to a circular symmetric hole entry hybrid journal bearing system. The results presented in the paper are expected to be quite useful to the bearing designers as well as for the academic community.


Author(s):  
Niranjan Singh ◽  
Rajeev Kumar Awasthi

The operating and geometric parameters of textures affect the static, dynamic, and stability performance characteristics of a journal-bearing system. The present work investigates the influence of spherical-, cylindrical-, triangular-, and kite-shaped textures on the performance parameters of a journal-bearing system. The flow of a lubricant is assumed to be Newtonian and iso-viscous. Reynold's equation governing the flow of a lubricant between the space in the bearing and the journal is solved by a finite-element method. The computed results indicate that the spherically textured journal bearing provides better improvement in the performance parameters vis-a-vis other textured bearings. In general, the effect of texture shapes is more pronounced at the aspect ratio of surface textures is 1.0.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


2021 ◽  
Author(s):  
Nicholas Husser ◽  
Stefano Brizzolara

In this study the impact of sweep angle on stepped hull resistance, running attitude, and dynamic stability is investigated for a range of planing speeds from ventilation inception (𝐹𝛻≈2) to high planing speeds (𝐹𝛻≈7) using RANS CFD. Potential performance benefits of the step are isolated for three speeds and two displacements using fixed trim simulations. Differences in running attitude and dynamic stability are investigated using free running simulations at the highest speed for a range of LCG locations. Finally, any differences in ventilation inception and performance at low speeds are investigated using fixed trim and heave simulations. The study shows that swept forward steps do not necessarily ventilate earlier than other step designs but do provide resistance reductions at 𝐹𝛻<5 compared to swept aft and unstepped designs. However, at 𝐹𝛻>5, swept forward steps demonstrate significant resistance increases compared to unswept and swept aft steps. At high speeds, swept aft steps provide improved dynamic stability compared to other step designs without a resistance penalty when compared to unswept steps.


1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


Sign in / Sign up

Export Citation Format

Share Document