Shaking table test of reinforced concrete coupled shear walls with single layer of web reinforcement and inclined steel bars

2018 ◽  
Vol 21 (15) ◽  
pp. 2282-2298 ◽  
Author(s):  
Jianwei Zhang ◽  
Wenbin Zheng ◽  
Cheng Yu ◽  
Wanlin Cao

In this study, five 1/4 scaled shaking table tests were conducted to investigate the seismic performance of reinforced concrete coupled shear walls with single layer of web reinforcement and inclined steel bars. The five tested coupled shear walls included three models with normal opening ratio (19%) and two models with large hole ratio (27%). The three models with normal opening included one model with single layer of web reinforcement, two models with single layer of web reinforcement and 75° inclined steel bars in the limbs’ web or at the bottom. Two reinforced concrete coupled shear walls with large hole and single row of reinforcements also were tested with inclined reinforcements or without them. The dynamic characteristics, dynamic response, and failure mode of each model were compared and analyzed. The test and analysis results demonstrate that the inclined steel bars are identified as an efficient means of limiting overall deformation, increasing energy dissipation, and reducing the possible damage by earthquake for reinforced concrete coupled shear walls with single layer of web reinforcement. Thus, reinforced concrete coupled shear walls with inclined steel bars have better seismic performance than reinforced concrete coupled shear walls without inclined steel bars. With appropriate design, reinforced concrete coupled shear walls with single layer of web reinforcement and inclined steel bars can be applied in multi-story buildings.

2016 ◽  
Vol 20 (1) ◽  
pp. 4-17 ◽  
Author(s):  
Liang Lu ◽  
Xia Liu ◽  
Junjie Chen ◽  
Xilin Lu

A controlled rocking reinforced concrete frame is a new type of vibration control structure system that uses resilient rocking columns and joints. The effects of earthquakes on this type of structure are reduced by weakening the overall stiffness, whereas the lateral displacement is controlled by the energy-dissipation dampers introduced into the structure. Two tests were performed for research: the reversed cyclic loading test and shaking table test. Two single-span single-story controlled rocking reinforced concrete frames were designed for reversed cyclic loading tests. These tests (i.e. a column-base joint stiffness test, beam-column joint stiffness test, and frame stiffness test) were performed under different conditions. The mechanical analysis model of the rocking joints was derived from the test results. With the parameters obtained from the cyclic tests, a numerical simulation method that established the analytical model of the controlled rocking reinforced concrete frame using the program ABAQUS is proposed, and the dynamic time-history analysis results of the controlled rocking reinforced concrete frame and of the conventional approach are compared to investigate the vibration control effect and seismic performance of the controlled rocking reinforced concrete frame. In addition, the inter-story drift could be effectively controlled by adding metallic dampers, and the shaking table test models of the controlled rocking reinforced concrete frame with metallic dampers were designed and constructed. The comparison of the results of the numerical analysis and the shaking table test demonstrates that the model building of the controlled rocking reinforced concrete frame structure is efficient and that the controlled rocking reinforced concrete frame exhibits an excellent seismic performance.


2014 ◽  
Vol 41 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Hieu Luu ◽  
Pierre Léger ◽  
Robert Tremblay

A parametric study was performed to examine the seismic behaviour of moderately ductile (MD) reinforced concrete shear walls designed according to Canadian code provisions, including National Building Code of Canada (NBCC) 2010 and Canadian Standards Association (CSA) 23.3-04, when subjected to typical high-frequency eastern North America earthquakes. The numerical models were experimentally validated based on large specimens shaking table test results. The results obtained following the code response spectrum procedure were compared with the results from inelastic response history analyses to investigate the effect of higher modes on seismic force demands. The results indicate that current code provisions for MD shear walls need to be modified. A new base shear factor and shear force design envelop are proposed to evaluate the seismic shear force demand more realistically. This study also recommends that the current CSA 23.3-04 requirements for ductile shear walls for bending moments could be applied to constrain the location of inelastic flexural deformations at the base of MD shear walls.


2020 ◽  
Vol 36 (3) ◽  
pp. 1074-1095 ◽  
Author(s):  
Matías A Hube ◽  
Hernán Santa María ◽  
Orlando Arroyo ◽  
Alvaro Vargas ◽  
Javier Almeida ◽  
...  

Thin reinforced concrete (RC) walls with single layer reinforcement have been used for houses and buildings in several Latin American countries. Although some design codes include recommendations for squat thin walls in low-rise constructions, its seismic performance has not been validated adequately in past earthquakes. This article presents the results of an experimental campaign of nine full-scale specimens conducted to characterize the influence of the steel type, the reinforcement ratio, and the wall thickness on the seismic behavior of squat thin RC walls with single layer reinforcement. Both welded wire and deformed bars were used as web reinforcement. Experimental results are used to develop nonlinear models to assess the seismic behavior of a prototype two-story house with welded wire reinforcement and deformed bars by means of incremental dynamic analyses. The experimental results show that the type of steel has the largest influence on wall seismic performance. The numerical results suggest that RC walls with single layer reinforcement are suitable for housing applications up to two stories in high seismicity regions, particularly walls detailed with deformed bars.


2015 ◽  
Vol 09 (04) ◽  
pp. 1550010
Author(s):  
Xuan-Huy Nguyen ◽  
Xuan-Dat Pham ◽  
Xuan-Chieu Luong

This paper presents an experimental program to investigate the effects of cross-sectional shape on the seismic performance of irregularly shaped reinforced concrete (RC) columns. Five groups of specimens that were one-quarter of typical columns of a prototype medium-rise building were tested to failure using shaking table. The loading procedure was successively increasing peak ground acceleration until the test structure collapsed. The specimens were designed with the same cross-section area but different flange width and flange thickness. The seismic response characteristics of all specimens such as drift capacity, energy absorption capacity and failure mechanisms of each specimen group are evaluated, compared and discussed in detail. Based on the current test data, design recommendation is provided to assist engineers in designing such irregularly shaped columns.


2014 ◽  
Vol 584-586 ◽  
pp. 1247-1250
Author(s):  
Bing Li ◽  
Li Na Lu ◽  
Hai Tao Lv ◽  
Xu Fang Li

Reinforced concrete eccentric frame-shear wall structure has been widely used in engineering. However, this structure is mainly used for high-rise structure, and it is difficult to obtain accurate earthquake response of structure through experimental study. Therefore, simulation software needs to be used for study on seismic performance of high-rise structures. This paper produces useful conclusions for the project through shaking table test and the simulation of seismic performance provided by ANSYS finite element analysis software.


2015 ◽  
Vol 104 (1) ◽  
pp. 1-8
Author(s):  
Kenichi Tahara ◽  
Yasuhito Sasaki ◽  
Yukihiro Sato ◽  
Satoshi Sasaki ◽  
Shojiro Motoyui

Sign in / Sign up

Export Citation Format

Share Document