Experimental investigation and numerical simulation on continuous wave laser ablation of multilayer carbon fiber composite

Author(s):  
Lianchun Long ◽  
Yao Huang ◽  
Jinfeng Zhang

Laser beam machining is one of the most widely used advanced processing techniques, which can be applied to compound materials. As a large number of photons are absorbed into the composite, the subsequent local heat storage, charring and potential delamination make the study for the effect of laser on complex materials become significant. In this paper, a carbon fiber epoxy composite laminated sheet is irradiated by continuous wave chemical oxygen iodine laser. The peak temperature of front surface, the temperature distribution of rear surface, and the appearance of ablation zone are presented. Further, based on the birth–death elements technique of finite element method, a three-dimensional model for simulating the transient temperature distribution and material removal has been developed under the same condition. The results reveal that the peak temperature of irradiated region ranges from 2800 K to 3100 K, and the center point shows a higher temperature rise rate than the surroundings in the irradiated zone. The measured data and predicted data are in a good consistency, which suggests that the numerical model is appropriate for simulating laser ablation of carbon fiber epoxy composites.

2008 ◽  
Vol 35 (12) ◽  
pp. 2042-2046 ◽  
Author(s):  
黄永光 Huang Yongguang ◽  
刘世炳 Liu Shibing ◽  
龙连春 Long Lianchun ◽  
田建东 Tian Jiandong ◽  
阳志光 Yang Zhiguang

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2035
Author(s):  
Umar Farooq ◽  
Muhammad Umair Ali ◽  
Shaik Javeed Hussain ◽  
Muhammad Shakeel Ahmad ◽  
Amad Zafar ◽  
...  

The influence of nanodiamonds (NDs) on the thermal and ablative performance of carbon-fiber-reinforced–epoxy matrix compositeswas explored. The ablative response of the composites with 0.2 wt% and 0.4 wt% NDs was studied through pre-and post-burning morphologies of the composite surfaces by evaluation of temperature profiles, weight loss, and erosion rate. Composites containing 0.2 wt% NDs displayed a 10.5% rise in erosion resistance, whereas composites containing 0.4 wt% NDs exhibited a 12.6% enhancement in erosion resistance compared to neat carbon fiber–epoxy composites. A similar trend was witnessed in the thermal conductivity of composites. Incorporation of composites with 0.2 wt% and 0.4 wt% NDs brought about an increase of 37 wt% and 52 wt%, respectively. The current study is valuable for the employment of NDs in carbon fiber composite applications where improved erosion resistance is necessary.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Liu ◽  
Shiqiang Deng ◽  
Jianing Zhang

Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites) modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM) technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite) have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics.


1992 ◽  
Vol 7 (5) ◽  
pp. 1152-1157 ◽  
Author(s):  
P.E. Dyer ◽  
S.T. Lau ◽  
G.A. Oldershaw ◽  
D. Schudel

The XeCl laser ablation of a polyetheretherketone (PEEK)-carbon fiber composite (APC-2) is reported. Etch rates and measurements of the ablation products have been carried out, together with scanning electron microscope evaluation of the etch craters. Selective removal of the PEEK matrix occurs for fluences ∼70–400 mJ cm−2. Net composite etching commences at ∼420 mJ cm−2, with an etch rate above this value that is determined by the carbon fibers and is consistent with thermal vaporization at high temperature (≥4000 K).


2008 ◽  
Author(s):  
Andrew Littlefield ◽  
Edward Hyland ◽  
Jack Keating

Sign in / Sign up

Export Citation Format

Share Document