scholarly journals Interlaminar adhesion assessment of carbon-epoxy laminates under salt water ageing using peel tests

Author(s):  
Marcio M Arouche ◽  
Sandip Budhe ◽  
Mariana D Banea ◽  
Sofia Teixeira de Freitas ◽  
Silvio de Barros

The aim of this study is to assess the interlaminar adhesion of carbon-epoxy laminates under salt water condition. Carbon-epoxy laminate specimens were immersed in a salt water tank for 60 days. Some specimens were then dried at room temperature for 280 days, until recovering their initial weight. Specimens were tested using the composite peel test, an adaptation of the floating roller peel tests for composite materials. The results showed a degradation of peel strength in some areas due to the ageing process. The drying process did not affect the test results. A scanning electron microscopic analysis carried out on the fracture surface of the specimens revealed a typical mode I failure microstructure. A mixture of matrix failure and fibre/matrix interfacial failure was observed in non-aged specimens. Finally, a chemical characterization of the fracture surfaces with energy-dispersive spectroscopy confirmed the penetration of salt water in regions near the edge of the specimens. A degradation of the fibre/matrix interface adhesion was observed in affected areas. Floating roller peel tests proved to be a fast and effective method to access the interlaminar adhesion performance of composite laminates.

2017 ◽  
Vol 66 (4) ◽  
pp. 449-461 ◽  
Author(s):  
Sahar W.M. Hassan ◽  
Hassan A.H. Ibrahim

Exopolysaccharides (EPSs) are high molecular weight polymers consisting of different sugar residues they are preferable for replacing synthetic polymers as they are degradable and nontoxic. Many microorganisms possess the ability to synthesize and excrete exopolysaccharides with novel chemical compositions, properties and structures to have potential applications in different fields. The present study attempt to optimize the production of EPS by marine Bacillus subtilis SH1 in addition to characterization and investigation of different valuable applications. Effect of medium type, incubation period and pH were studied using the one factor at a time experiments. It was shown that the highest productivity (24 gl–1) of exopolysaccharides was recorded by using yeast malt glucose medium with pH 9 at the fourth day of incubation. Experimental design using Response Surface Methodology (RSM) was applied to optimize various nutrients at different concentrations. The finalized optimized medium contained (gl–1) glucose (5), peptone (2.5), yeast extract (4.5) and malt extract (4.5) increased the production of EPS to 33.8 gl–1 with1.4 fold increase compared to the basal medium. Chemical characterization of the extracted EPS showed that, FTIR spectra exhibited bands at various regions. Moreover, HPLC chromatogram indicated that the EPS was a heteropolysaccharide consisting of maltose and rhamnose. The study was extended to evaluate the potentiality of the extracted polysaccharides in different medical applications. Results concluded that, EPS exhibited antibacterial activity against Aeromonas hydrophila, Pseudomonas aeruginosa and Streptococcus faecalis and the highest antibacterial activity (7.8, 9 and 10.4 AU/ml) was against S. faecalis at 50, 100 and 200 mg/ml respectively. The EPS exhibited various degree of antitumor effect toward the tested cell lines (MCF-7, HCT-116 and HepG2). In addition, EPS exhibited antiviral activity at 500 μg/ml. The antioxidant capacity increased with increasing the concentration of the sample. Scanning electron microscopic analysis showed that EPS had compact film-like structure, which could make it a useful in the future applications as in preparing plasticized film.


1988 ◽  
Vol 119 ◽  
Author(s):  
K-S. Kim

AbstractThe mechanics aspects of the peel test are analyzed. In this analysis, the limitation and applicability of the peel test for thin film adhesion have been investigated. Firstly, the effect of plasticity in the peel test of thin metallic films is analyzed. The analysis has given a closed form solution for the partitioning of peel strength between the energy expenditure rate for the decohesion process and the internal work expenditure rate caused by plastic deformation (bending) of the film. The results predicted the variation of peel strength as a function of the film thickness, the film yield stress and the compliance of the substrate. This analysis shows that the peel strength is very sensitive to the thickness of the film and the yield stress of the film. As observed in the experiment, the peel strength has a peak value at a certain thickness of the film. This is explained for both L and T peel tests. Unlike the L peel test, the peak phenomenon in the T peel test (of metallic films) is due to the hardening of the adhered film. Secondly, the effect of plasticity and viscoelasticity in the peel test of thin polymer films is analyzed. Unlike the peel test of metallic films, tension and shear effect of the film deformation is very important in the analysis of the polymer peel test. An integral equation is formulated for the viscoelastic models of the adhered film. The solution of the integral equation reveals the important parameters in polymer peeling and their contribution to the peel force as well as to the viscoelastic dissipation. In addition, the meaning of the interface toughness is reexamined and the interface toughness is evaluated by the peel test. Based on these analyses, a Universal Peel Diagram has been constructed, which accounts for the hardening behavior of the film. On this diagram, objective interfacial decohesion toughness can be readily obtained using very simple peel tests. The analysis includes not only the 900° peel test but also the general angle peel test. Comparison between the theory and experiment has been made with the experimental data provided by J. Kim of IBM. The comparison shows good agreement.


2021 ◽  
Author(s):  
Chenping Zhang ◽  
Yugang Duan ◽  
Hong Xiao ◽  
Ben Wang ◽  
Yueke Ming ◽  
...  

Abstract Manufacturing thermoplastic composites (TPC) with excellent mechanical properties requires advanced methods with reduced costs and better overall efficiencies. In this study, fiber-reinforced thermoplastic polymer composite laminates were manufactured using an automated fiber placement (AFP) manufacturing technology. The effects of processing temperature (from 320 ℃ to 500 ℃), lay-up speed (from 20 mm/s to 260 mm/s), consolidation force (from 100 N to 600 N), and prepreg tape tension (from 0 N to 9 N) on the quality of the resulting laminates manufactured using the laser AFP system were investigated. The interlayer bond strength was characterized using wedge peel tests on samples prepared with different process parameters. The studies were complemented by measurements of the thermal properties of the composites using different scanning calorimetry. The optimized process parameter windows were determined to be 360 ℃ to 400 ℃ for the irradiation temperature, 140 mm/s to 160 mm/s for the lay-up speed, 100 N for the consolidation force, and 3 N to 5 N for the prepreg tape tension, respectively. The microscopic analysis of the cross-sections and peel-damaged surfaces revealed that the different distributions of the resin matrix resulting from the different processing parameters affected the interlayer strength. These results may provide an important reference for manufacturing TPC used in aerospace, defense, and automotive applications.


Author(s):  
F.J. Sjostrand

In the 1940's and 1950's electron microscopy conferences were attended with everybody interested in learning about the latest technical developments for one very obvious reason. There was the electron microscope with its outstanding performance but nobody could make very much use of it because we were lacking proper techniques to prepare biological specimens. The development of the thin sectioning technique with its perfectioning in 1952 changed the situation and systematic analysis of the structure of cells could now be pursued. Since then electron microscopists have in general become satisfied with the level of resolution at which cellular structures can be analyzed when applying this technique. There has been little interest in trying to push the limit of resolution closer to that determined by the resolving power of the electron microscope.


Author(s):  
Charlotte L. Ownby ◽  
David Cameron ◽  
Anthony T. Tu

In the United States the major health problem resulting from snakebite poisoning is local tissue damage, i.e. hemorrhage and myonecrosis. Since commercial antivenin does not usually prevent such damage to tissue, a more effective treatment of snakebite-induced myonecrosis is needed. To aid in the development of such a treatment the pathogenesis of myonecrosis induced by a pure component of rattlesnake venom was studied at the electron microscopic level.The pure component, a small (4,300 mol. wt.), basic (isoelectric point of 9.6) protein, was isolated from crude prairie rattlesnake (Crotalus viridis viridis) venom by gel filtration (Sephadex G-50) followed by cation exchange chromatography (Sephadex C-25), and shown to be pure by electrophoresis. Selection of the myotoxic component was based on light microscopic observations of injected mouse muscle.


Author(s):  
Ralph M. Albrecht ◽  
Scott R. Simmons ◽  
Marek Malecki

The development of video-enhanced light microscopy (LM) as well as associated image processing and analysis have significantly broadened the scope of investigations which can be undertaken using (LM). Interference/polarization based microscopies can provide high resolution and higher levels of “detectability” especially in unstained living systems. Confocal light microscopy also holds the promise of further improvements in resolution, fluorescence studies, and 3 dimensional reconstruction. Video technology now provides, among other things, a means to detect differences in contrast difficult to detect with the human eye; furthermore, computerized image capture, processing, and analysis can be used to enhance features of interest, average images, subtract background, and provide a quantitative basis to studies of cells, cell features, cell labelling, and so forth. Improvements in video technology, image capture, and cost-effective computer image analysis/processing have contributed to the utility and potential of the various interference and confocal microscopic instrumentation.Electron microscopic technology has made advances as well. Microprocessor control and improved design have contributed to high resolution SEMs which have imaging capability at the molecular level and can operate at a range of accelerating voltages starting at 1KV. Improvements have also been seen in the HVEM and IVEM transmission instruments. As a whole, these advances in LM and EM microscopic technology provide the biologist with an array of information on structure, composition, and function which can be obtained from a single specimen. Corrrelative light microscopic analysis permits examination of living specimens and is critical where the “history” of a cell, cellular components, or labels needs to be known up to the time of chemical or physical fixation. Features such as cytoskeletal elements or gold label as small as 0.01 μm, well below the 0.2 μm limits of LM resolution, can be “detected” and their movement followed by VDIC-LM. Appropriate identification and preparation can then lead to the examination of surface detail and surface label with stereo LV-HR-SEM. Increasing the KV in the HR-SEM while viewing uncoated or thinly coated specimens can provide information from beneath the surface as well as increasing Z contrast so that positive identification of surface and subsurface colloidal gold or other heavy metal labelled/stained material is possible. Further examination of the same cells using stereo HVEM or IVEM provides information on internal ultrastructure and on the relationship of labelled material to cytoskeletal or organellar distribution, A wide variety of investigations can benefit from this correlative approach and a number of instrumentational configurations and preparative pathways can be tailored for the particular study. For a surprisingly small investment in time and technique, it is often possible to clear ambiguities or questions that arise when a finding is presented in the context of only one modality.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1955
Author(s):  
Marco Cen-Puc ◽  
Andreas Schander ◽  
Minerva G. Vargas Gleason ◽  
Walter Lang

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.


Sign in / Sign up

Export Citation Format

Share Document