Piston dynamics, lubrication and tribological performance evaluation: A review

2018 ◽  
Vol 21 (5) ◽  
pp. 725-741 ◽  
Author(s):  
Cristiana Delprete ◽  
Abbas Razavykia

Mechanical power loss of lubricated and bearing surfaces serves as an attractive domain for study and research in the field of internal combustion engines. Friction reduction at lubricated and bearing surface is one of the most cost-effective ways to reduce gas emission and improve internal combustion engines’ efficiency. This thus motivates automotive industries and researchers to investigate tribological performance of internal combustion engines. Piston secondary motion has prime importance in internal combustion engines and occurs due to unbalanced forces and moments in a plane normal to the wrist pin axis. Consequently, piston executes small translations and rotations within the defined clearance during the piston reciprocating motion. Mechanical friction power loss and lubrication at piston skirt/liner and radiated engine noise are dramatically affected by piston secondary dynamics. The lubrication mechanism, piston secondary motion and tribological performance are affected by piston design parameters (piston/liner clearance, wrist pin offset, skirt profile, etc.), lubricant rheology, oil transport mechanism and operating conditions. Therefore, this review is devoted to summarize the synthesis of main technical aspects, research efforts, conclusions and challenges that must be highlighted regarding piston skirt/liner lubrication and piston dynamics and slap.

Author(s):  
Grant Smedley ◽  
S. H. Mansouri ◽  
Tian Tian ◽  
Victor W. Wong

Friction from the power cylinder represents a significant contribution to the total mechanical losses in internal combustion engines. A reduction in piston ring friction would therefore result in higher efficiency, lower fuel consumption, and reduced emissions. In this study, models incorporating piston ring dynamics and piston secondary motion with elastic skirt deformation were applied to a Waukesha natural gas power generation engine to identify the main contributors to friction within the piston and ring pack system. Based on model predictions, specific areas for friction reduction were targeted and low-friction design strategies were devised. The most significant contributors to friction were identified as the top ring, the oil control ring, and the piston skirt. Model predictions indicated that the top ring friction could be reduced by implementing a skewed barrel profile design or an upward piston groove tilt design, and oil control ring friction could be reduced by decreasing ring tension. Piston design parameters such as skirt profile, piston-to-liner clearance, and piston surface characteristics were found to have significant potential for the reduction of piston skirt friction. Designs were also developed to mitigate any adverse effects that were predicted to occur as a result of implementation of the low-friction design strategies. Specifically, an increase in wear was predicted to occur with the upward piston groove tilt design, which was eliminated by the introduction of a positive static twist on the top ring. The increase in oil consumption resulting form the reduction in the oil control ring tension was mitigated by the introduction of a negative static twist on the second ring. Overall, the low-friction design strategies were predicted to have potential to reduce piston ring friction by 35% and piston friction by up to 50%. This would translate to an improvement in brake thermal efficiency of up to 2%, which would result in a significant improvement in fuel economy and a substantial reduction in emissions over the life of the engine.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-121
Author(s):  
Oleksandr Khrulev ◽  
◽  
Olexii Saraiev ◽  
Iryna Saraieva ◽  
◽  
...  

The analysis of the crankshaft bearing condition of the automotive internal combustion engines in the case of insufficiency and breakage of oil supply to them is carried out. It is noted that this fault is one of the most common causes of damage to rubbing pairs in operation. At the same time, the different groups of bearings are often damaged, which cannot be explained within the framework of existing models of plain bearing lubrication. The objective of the work is to develop a mathematical model of oil supply to connecting rod bearings in emergency mode, taking into account the characteristic features of the bearing design. The model also, depending on the nature of the damage, should help to determine and explain the causes of bearing failures if they occur in different modes when operating conditions are broken. A computational model has been developed that makes it possible to assess the effect of design differences in the features of oil supply and the action of the centrifugal forces during crankshaft rotation on the oil column in the lubrication hole where oil is supplied to the conrod bearing. Calculations of the change in time of the oil supply pressure to the connecting rod bearings for the various designs of the crankshaft lubrication holes have been performed. It is shown that, depending on the operating mode of the engine and its design, the oil pressure in front of the connecting rod bearings does not disappear immediately after oil supply failure to crankshaft. Moreover, the lower the crankshaft speed is, the longer the lubrication of the conrod bearings will continue. The calculation results are confirmed by the data of the expert studies of the engine technical condition, in which the crankshaft was wedged in the damaged main bearings was found in the absence of serious damage to the connecting rod ones. It has been found that such features of the damage correspond to an rapid breakage of the oil supply to the crankshaft in the case of such operational damage as the oil pump and pressure reducing valve failure, the oil filter seal and oil pan destruction, etc. The developed model explains the difference in lubrication conditions and in the damage feature to the main and connecting rod bearings in the emergency cases of the oil supply breakage, which are observed during operation, and helps to clarify the failure causes. This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines when the operating conditions are broken.


2018 ◽  
Vol 182 ◽  
pp. 01027
Author(s):  
Jan Monieta

The intensity of infrared radiation emitted by objects depends mainly on their temperature. One of the diagnostic signals may be the temperature field. In infrared thermography, this quantity is used as an indicator of the technical condition of marine objects. The article presents an overview of the use of infrared thermography for the diagnosis mainly of marine piston floating objects and various types of reciprocating internal combustion engines as well as examples of own research results. A general introduction to infrared thermography and common procedures for temperature measurement and non-destructive testing are presented. Experimental research was carried out both in laboratory conditions and in the operating conditions of sea-going vessels. Experimental studies consisted of the presentation of photographs of the same objects made in visible light and the use of infrared thermography. The same objects were also compared, but for different cylinders of the tested internal combustion engines as well as for the up state and fault state. The characteristics of the temperature values at selected points were taken depending on the engine load along with the approximation mathematical models of these dependencies.


2018 ◽  
Vol 20 (4) ◽  
pp. 393-404 ◽  
Author(s):  
José Galindo ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Daniel Tarí ◽  
Hadi Tartoussi ◽  
...  

Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually addressed employing its performance map. However, simulation of engine transients may drive the compressor to work at operating conditions outside the region provided by the manufacturer map. Therefore, a method is required to extrapolate the performance map to extended off-design conditions. This work examines several extrapolating methods at the different off-design regions, namely, low-pressure ratio zone, low-speed zone and high-speed zone. The accuracy of the methods is assessed with the aid of compressor extreme off-design measurements. In this way, the best method is selected for each region and the manufacturer map is used in design conditions, resulting in a zonal extrapolating approach aiming to preserve accuracy. The transitions between extrapolated zones are corrected, avoiding discontinuities and instabilities.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Andrea De Martin ◽  
Giovanni Jacazio ◽  
Massimo Sorli

Abstract The variation of the valve lift is a fairly common strategy currently adopted in several in-service internal combustion engines to optimize their performance depending on the operating conditions of the vehicle. The most critical aspect to consider during the conceptual design phase of a cam switch system is the extremely narrow window of opportunity to perform the cam change, which duration is defined by the time during which the corresponding valve lift is null. To meet this requirement and ensure safe, repeatable movements, a novel architecture based on the combination of a new electromechanical actuator and its dedicated control system is presented. The architecture is at first introduced with reference to the numerous examples available in the literature, and hence mathematically described. The dynamic model of the system derived from the presented equation is then used to study the performance of the presented solution and define its control strategy. Results are finally presented and discussed.


Author(s):  
Nader Dolatabadi ◽  
Stephanos Theodossiades ◽  
Steve J. Rothberg

The impulsive behavior of piston plays a key role in the Noise, Vibration and Harshness (NVH) of internal combustion engines. There have been several studies on the identification and quantification of piston impacting action under various operation conditions. In the current study, the dynamics of piston secondary motion are briefly explored, since this is fundamental to understanding the aggressive oscillations, energy loss and noise generation. Concepts of controlling piston secondary motion (and thus, impacts) are investigated and a new passive control approach is presented based on the nonlinear energy absorption of the highly transient oscillations. The effectiveness of this new method on the improvement of piston impact behavior is discussed, using a preliminary optimization exercise (with respect to engine excitation/speed, damping and stiffness of the nonlinear oscillator) that leads to the conceptual design of a nonlinear energy absorber.


2020 ◽  
Vol 10 (11) ◽  
pp. 3705
Author(s):  
Ahmad Alshwawra ◽  
Florian Pohlmann-Tasche ◽  
Frederik Stelljes ◽  
Friedrich Dinkelacker

Reducing friction is an important aspect to increase the efficiency of internal combustion engines (ICE). The majority of frictional losses in engines are related to both the piston skirt and piston ring–cylinder liner (PRCL) arrangement. We studied the enhancement of the conformation of the PRCL arrangement based on the assumption that a suitable conical liner in its cold state may deform into a liner with nearly straight parallel walls in the fired state due to the impact of mechanical and thermal stresses. Combining the initially conical shape with a noncircular cross section will bring the liner even closer to the perfect cylindrical shape in the fired state. Hence, a significant friction reduction can be expected. For the investigation, the numerical method was first developed to simulate the liner deformation with advanced finite element methods. This was validated with given experimental data of the deformation for a gasoline engine in its fired state. In the next step, initially conically and/or elliptically shaped liners were investigated for their deformation between the cold and fired state. It was found that, for liners being both conical and elliptical in their cold state, a significant increase of straightness, parallelism, and roundness was reached in the fired state. The combined elliptical-conical liner led to a reduced straightness error by more than 50% compared to the cylindrical liner. The parallelism error was reduced by 60% to 70% and the roundness error was reduced between 70% and 80% at different liner positions. These numerical results show interesting potential for the friction reduction in the piston-liner arrangement within internal combustion engines.


Sign in / Sign up

Export Citation Format

Share Document