Validation of a comprehensive computational fluid dynamics methodology to predict the direct injection process of gasoline sprays using Spray G experimental data

2019 ◽  
Vol 21 (1) ◽  
pp. 199-216 ◽  
Author(s):  
Davide Paredi ◽  
Tommaso Lucchini ◽  
Gianluca D’Errico ◽  
Angelo Onorati ◽  
Lyle Pickett ◽  
...  

A detailed prediction of injection and air–fuel mixing is fundamental in modern direct injection, spark-ignition engines to guarantee a stable and efficient combustion process and to minimize pollutant formation. Within this context, computational fluid dynamics simulations nowadays represent a powerful tool to understand the in-cylinder evolution of spray and air–fuel charge. To guarantee the accuracy of the adopted multidimensional spray sub-models, it is mandatory to validate the computed results against available experimental data under well-defined operating conditions. To this end, in this work, the authors proposed the calibration and validation of a comprehensive set of spray sub-models by means of the simulation of the Spray G experiment, available in the context of the engine combustion network. For a suitable validation of the proposed numerical setup in addition to the baseline condition, gasoline direct injection operating points typical of early injection with homogeneous operation, late injection with high ambient density and flash boiling with enhanced fuel evaporation were also simulated. Numerical computations were validated against a wide set of available experimental data by means of an accurate post-processing analysis taking into account axial liquid and vapor penetrations, gas-phase velocity between spray plumes, droplet size, plume liquid velocity, direction and mass distribution. Satisfactory results were achieved with the proposed setup, which is able to predict gasoline spray evolution under different operating conditions.

Author(s):  
Daniel Probst ◽  
Sameera Wijeyakulasuriya ◽  
Pinaki Pal ◽  
Christopher Kolodziej ◽  
Eric Pomraning

Abstract Knock is a major design challenge for spark-ignited engines. Knock constrains high load operation and limits efficiency gains that can be achieved by implementing higher compression ratios. The propensity to knock depends on the interaction among fuel properties, engine geometry, and operating conditions. Moreover, cycle-to-cycle variability (CCV) in knock intensity is commonly encountered under abnormal combustion conditions. In this situation, knock needs to be assessed with multiple engine cycles. Therefore, when using computational fluid dynamics (CFD) to predict knock behavior, multi-cycle simulations must be performed. The wall clock time for simulating multiple consecutive engine cycles is prohibitive, especially for a statistically valid sample size (i.e. 30–100 cycles). In this work, 3-d CFD simulations were used to model knocking phenomena in the cooperative fuel research (CFR) engine. Unsteady Reynolds-Averaged Navier Stokes (uRANS) simulations were performed with a hybrid combustion modeling approach using the G-equation method to track the turbulent flame front and finite-rate chemistry model to predict end-gas autoignition. To circumvent the high cost of running simulations with a large number of consecutive engine cycles, a concurrent perturbation method (CPM) was evaluated to predict knock CCV. The CPM was based on previous work by the authors, in which concurrent engine cycles were used to predict engine CCV in a non-knocking gasoline direct injection (GDI) engine. Concurrent cycles were initialized by perturbing a saved flow field with a random isotropic velocity field. By initializing each cycle with a perturbation sufficiently early in the cycle, each case yields a distinct and valid prediction of combustion due to the chaotic nature of the system. Three operating points were simulated, with different spark timings corresponding to heavy knock, light knock, and no knock. For all the operating points, other conditions were based on the standard research octane number (RON) test specification for iso-octane. The spark timing of the heavy knock case was the same as that of the RON test. The in-cylinder pressure fluctuations were isolated using a frequency filtering method. A bandpass filter was applied to eliminate high and low frequencies. The knocking pressures were calculated consistently between the experimental and simulation data, including the sampling frequency of the data. The simulation data was sampled to match the sampling rate of the experimental data. The knock intensities were compared for the concurrently obtained cycles, the consecutively obtained cycles, and experimental cycles. Knock predictions from the concurrent and consecutive simulations compared well to each other and with experiments, thereby demonstrating the validity of the CPM approach.


2018 ◽  
Vol 20 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Sampath K Rachakonda ◽  
Arman Paydarfar ◽  
David P Schmidt

A parametric study was conducted to predict the conditions leading to spray collapse in multi-hole gasoline direct-injection fuel injectors using computational fluid dynamics simulations. The computational fluid dynamics simulations were performed using an in-house multi-dimensional code that accounts for thermal non-equilibrium and entrainment of the non-condensable gas and coupled with primary atomization. The simulations were performed for a fixed injection pressure and fuel temperature on nine different six-hole injectors. The parameters were varied to include the effects of the ratio of the ambient pressure to the saturation pressure (Pa/Ps), the drill angle, and the diameters of the nozzle and the counter bore, respectively, on the spray. The findings indicate that spray collapse results from a combination of the nozzle geometry, the thermodynamic conditions of the fuel, and the ambient pressure. Spray collapse was observed in injectors with a narrow arrangement of the nozzle holes under extreme flash-boiling conditions with very low ambient pressures and in the case of non-flash-boiling conditions with very high ambient pressures.


Author(s):  
Y Zhu ◽  
H Zhao ◽  
N Ladommatos

The piston bowl design is one of the most important factors that affect the air-fuel mixing and the subsequent combustion and pollutant formation processes in a direct-injection diesel engine. The bowl geometry and dimensions, such as the pip region, bowl lip area, and toroidal radius, are all known to have an effect on the in-cylinder mixing and combustion process. In order to understand better the effect of re-entrant geometry, three piston bowls with different toroidal radii and lip shapes were investigated using computational fluid dynamics engine modelling. KIVA3V with improved submodels was used to model the in-cylinder flows and combustion process, and it was validated on a high-speed direct-injection engine with a second-generation common-rail fuel injection system. The engine's performance, in-cylinder flow, and combustion, and emission characteristics were analysed at maximum power and maximum torque conditions and at part-load operating conditions. Three injector protrusions and injection timings were investigated at full-load and part-load conditions.


2016 ◽  
Vol 18 (7) ◽  
pp. 657-676 ◽  
Author(s):  
Prasad S Shingne ◽  
Robert J Middleton ◽  
Dennis N Assanis ◽  
Claus Borgnakke ◽  
Jason B Martz

This two-part article presents a model for boosted and moderately stratified homogeneous charge compression ignition combustion for use in thermodynamic engine cycle simulations. The model consists of two components: one an ignition model for the prediction of auto-ignition onset and the other an empirical combustion rate model. This article focuses on the development and validation of the homogeneous charge compression ignition model for use under a broad range of operating conditions. Using computational fluid dynamics simulations of the negative valve overlap valve events typical of homogeneous charge compression ignition operation, it is shown that there is no noticeable reaction progress from low-temperature heat release, and that ignition is within the high-temperature regime ( T > 1000 K), starting within the highest temperature cells of the computational fluid dynamics domain. Additional parametric sweeps from the computational fluid dynamics simulations, including sweeps of speed, load, intake manifold pressures and temperature, dilution level and valve and direct injection timings, showed that the assumption of a homogeneous charge (equivalence ratio and residuals) is appropriate for ignition modelling under the conditions studied, considering the strong sensitivity of ignition timing to temperature and its weak compositional dependence. Use of the adiabatic core temperature predicted from the adiabatic core model resulted in temperatures within ±1% of the peak temperatures of the computational fluid dynamics domain near the time of ignition. Thus, the adiabatic core temperature can be used within an auto-ignition integral as a simple and effective method for estimating the onset of homogeneous charge compression ignition auto-ignition. The ignition model is then validated with an experimental 92.6 anti-knock index gasoline-fuelled homogeneous charge compression ignition dataset consisting of 290 data points covering a wide range of operating conditions. The tuned ignition model predictions of [Formula: see text] have a root mean square error of 1.7° crank angle and R2 = 0.63 compared to the experiments.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.


2019 ◽  
Vol 21 (8) ◽  
pp. 1520-1540 ◽  
Author(s):  
Ankit A Raut ◽  
J M Mallikarjuna

In-cylinder water injection is a promising approach for reducing NOx and soot emissions from internal combustion engines. It allows one to use a higher compression ratio by reducing engine knock; hence, higher fuel economy and power output can be achieved. However, water injection can also affect engine combustion and emission characteristics if water injection and injector parameters are not properly set. Majority of the previous studies on the water injection are done through experiments. Therefore, subtle aspects of water injection such as in-cylinder interaction of water sprays, spatial distribution of water vapor, and effect on flame propagation are not clearly understood and rarely reported in literature due to experimental limitations. Thus, in the present article, a computational fluid dynamics investigation is carried out to analyze the effects of direct water injection under various injector configurations on water evaporation, combustion, performance, and emission characteristics of a gasoline direct injection engine. The emphasis is given to analyze in-cylinder water spray interactions, flame propagation, water spray droplet size distribution, and water vapor spatial distribution inside the engine cylinder. For the study, the water-to-fuel ratio is varied from 0 to 1. Various water injector configurations using nozzle hole diameters of 0.14, 0.179, and 0.205 mm, along with nozzle holes of 4, 5, 6, and 7, are considered for comparison in addition to the case of no_water. Computational fluid dynamics models used in this study are validated with the available data in literature. From the results, it is found that the emission and performance characteristics of the engine are highly dependent on water evaporation characteristics. Also, the water-to-fuel ratio of 0.6 with 6 number of nozzle holes and the nozzle diameter of 0.14 mm results in the highest indicated mean effective pressure and the lowest NOx, soot, and CO emissions compared to other cases considered.


2019 ◽  
Vol 9 (19) ◽  
pp. 4133 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Wang ◽  
Han ◽  
Chen

Engine knock has become the prime barrier to significantly improve power density and efficiency of the engines. To further look into the essence of the abnormal combustion, this work studies the working processes of normal combustion and knock combustion under practical engine operating conditions using a three-dimensional computation fluid dynamics (CFD) fluid software CONVERGE (Version 2.3.0, Convergent Science, Inc., Madison, USA). The results show that the tumble in the cylinder is gradually formed with the increase of the valve lift, enhances in the compression stroke and finally is broken due to the extrusion of the piston. The fuel droplets gradually evaporate and move to the intake side under the turbulent and high temperature in the cylinder. During the normal combustion process, the flame propagates faster on the intake side and it facilitates mixture in cylinder combustion. During the knock combustion simulation, the hotspots near the exhaust valve are observed, and the propagating detonation wave caused by multiple hotspots auto-ignition indicates significant effects on knock intensity of in-cylinder pressure.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Miguel Ballesteros ◽  
Nicolás Ratkovich ◽  
Eduardo Pereyra

Abstract Low liquid loading flow occurs very commonly in the transport of any kind of wet gas, such as in the oil and gas, the food, and the pharmaceutical industries. However, most studies that analyze this type of flow do not cover actual industry fluids and operating conditions. This study focused then on modeling this type of flow in medium-sized (6-in [DN 150] and 10-in [DN 250]) pipes, using computational fluid dynamics (CFD) simulations. When comparing with experimental data from the University of Tulsa, the differences observed between experimental and CFD data for the liquid holdup and the pressure drop seemed to fall within acceptable error, around 20%. Additionally, different pipe sections from a Colombian gas pipeline were simulated with a natural gas-condensate mixture to analyze the effect of pipe inclination and operation variables on liquid holdup, in real industry conditions. It was noticed that downward pipe inclinations favored smooth stratified flow and decreased liquid holdup in an almost linear fashion, while upward inclinations generated unsteady wavy flows, or even a possible annular flow, and increased liquid holdup and liquid entrainment into the gas phase.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Diego Torre ◽  
Raúl Vázquez ◽  
Elena de la Rosa Blanco ◽  
Howard P. Hodson

This paper describes a new flow mechanism for the reduction in secondary flows in low pressure turbines using the benefit of contoured endwalls. The extensive application of contoured endwalls in recent years has provided a deeper understanding of the physical phenomenon that governs the reduction in secondary flows. Based on this understanding, the endwall geometry of a linear cascade of solid-thin profiles typical of low pressure turbines has been redesigned. Experimental data are presented for the validation of this new solution. Based on these data, a reduction of 72% in the secondary kinetic energy helicity (SKEH) and 20% in the mixed-out endwall losses can be obtained. Computational fluid dynamics simulations are also presented to illustrate the effect of the new endwall on the secondary flows. Furthermore, an explanation of the flow mechanism that governs the reduction in the SKEH, and the losses is given.


Sign in / Sign up

Export Citation Format

Share Document