Response surface methodology optimization of electrospinning process parameters to fabricate aligned polyvinyl butyral nanofibers for interlaminar toughening of phenolic-based composite laminates

2018 ◽  
Vol 49 (7) ◽  
pp. 858-874 ◽  
Author(s):  
Parvaneh Kheirkhah Barzoki ◽  
Masoud Latifi ◽  
Amir Masoud Rezadoust

In this study and for the first time, aligned nanofibers were produced from low molecular weight polyvinyl butyral. Using response surface methodology, the preparation condition of aligned nanofiber was optimized in terms of nanofiber diameter and its structural stability. Central composite design as a response surface methodology was employed and the effects of process variables and their influence on nanofiber diameter were investigated. Based on a statistical analysis, the use of a model, which was used to determine the nanofiber diameter, proved to be successful because of its low probability value (0.0073) and high correlation coefficient (0.9619). A high-speed cylinder collector was used to fabricate aligned polyvinyl butyral nanofibers. The optimum conditions of 17.5 kV voltage, 10 cm collector distance, 13% solution concentration, and 2100 r/min rotational speed were obtained from experiments. The least diameter of 158.6 nm along with a stable structure was determined for polyvinyl butyral nanofiber prepared under the optimum conditions. An aligned polyvinyl butyral nanoweb was applied on the mid-layer of glass-phenolic laminated composites as an interlaminar reinforcement. The fracture behavior of the laminates was determined by end-notched flexure tests. Excellent toughening property which was observed for the aligned polyvinyl butyral nanofibers caused the mode-II fracture toughness and its maximum force to increase by 25.2 and 40.8%, respectively.

2016 ◽  
Vol 14 (1) ◽  
pp. 283-288 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar

AbstractThe main objective of the present study is to prepare a chitosan based nanofiber and model the electrospinning process using response surface methodology (RSM). The electrospinning parameters such as collector distance, polymer solution concentration and applied voltage were optimized by using three-variable-three-level Box–Behnken design (BBD). Based on RSM analysis, second order polynomial equation was formed and it indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the individual and interactive effects of process variables on chitosan based nanofiber diameter. The optimum process conditions for the minimum chitosan based nanofiber diameter (0.3 µm) were found to be collector distance of 12 cm, polymer solution concentration of 25% and applied voltage of 6 kV.


2008 ◽  
Vol 8 (5) ◽  
pp. 2509-2515 ◽  
Author(s):  
Nader Naderi ◽  
Farima Agend ◽  
Reza Faridi-Majidi ◽  
Naser Sharifi-Sanjani ◽  
Mohammad Madani

Response surface methodology (RSM) was used to obtain a more systematic understanding of the electrospinning conditions of polyamide 6 solutions. This method was used to establish a quantitative basis for the relationships between the electrospinning parameters such as applied electric field, the polymer concentrations, the rate of injection and nozzle-collector distance with the diameter of the produced nanofibers, and to predict the optimum conditions for electrospinning to produce nanofibers with controlled size. A response function was empirically determined by central composite design (CCD) using fiber diameter as an observed response and the electrospinning parameters as variables. The relationship between the response and the variables is visualized by a response surface or contour plots. The study of the graphical representations of contour plots, prediction formulas and prediction profiler can predict the operating conditions necessary to generate nanofibers with the desired diameters.


2016 ◽  
Vol 19 (0) ◽  
Author(s):  
Ricardo Schmitz Ongaratto ◽  
Luiz Antonio Viotto

Summary The aim of this work was to separately evaluate the effects of pectinase and cellulase on the viscosity of pitanga juice, and determine the optimum conditions for their use employing response surface methodology. The independent variables were pectinase concentration (0-2.0 mg.g–1) and cellulase concentration (0-1.0 mg.g–1), activity time (10-110 min) and incubation temperature (23.2-56.8 °C). The use of pectinase and cellulase reduced the viscosity by about 15% and 25%, respectively. The results showed that enzyme concentration was the most important factor followed by activity time, and for the application of cellulase the incubation temperature had a significant effect too. The regression models showed correlation coefficients (R2) near to 0.90. The pectinase application conditions that led to the lowest viscosity were: concentration of 1.7 mg.g–1, incubation temperature of 37.6 °C and incubation time of 80 minutes, while for cellulase the values were: concentration of 1.0 mg.g-1, temperature range of 25 °C to 35 °C and incubation time of 110 minutes.


2020 ◽  
Vol 83 (1) ◽  
pp. 85-92
Author(s):  
Mohd Azahar Mohd Ariff ◽  
Muhammad Syafiq Abd Jalil ◽  
Noor ‘Aina Abdul Razak ◽  
Jefri Jaapar

Caesalpinia sappan linn. (CSL) is a plant which is also known as Sepang tree contains various medicinal values such as to treat diarrhea, skin rashes, syphilis, jaundice, drinking water for blood purifying, diabetes, and to improve skin complexion. The aim of this study is to obtain the most optimum condition in terms of the ratio of sample to solvent, particle size, and extraction time to get the highest amount of concentration of the CSL extract. In this study, the ranges of each parameters used were: ratio sample to solvent: 1.0:20, 1.5:20, 2.0:20, 2.5:20, 3.0:20, particle size: 1 mm, 500 um, 250 um, 125 um, 63 um, and extraction time: 1 hr, 2 hr, 3 hr, 4 hr, 5 hr. The concentration was analyzed using a UV-vis spectrophotometer. The optimum conditions were obtained by response surface methodology. From the design, 20 samples were run throughout this experiment. The optimized value from the RSM were 2.0:20 for ratio sample to solvent, 125 µm of particle size and 2.48 hours with the concentration of 37.1184 ppm. The accuracy of the predictive model was validated with 2 repeated runs and the mean percentage error was less than 3%. This confirmed the model’s capability for optimizing the conditions for the reflux extraction of CSL’s wood.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1485
Author(s):  
Enoch A. Akinpelu ◽  
Seteno K. O. Ntwampe ◽  
Abiola E. Taiwo ◽  
Felix Nchu

This study investigated the use of brewing wastewater (BW) as the primary carbon source in the Postgate medium for the optimisation of sulphate reduction in acid mine drainage (AMD). The results showed that the sulphate-reducing bacteria (SRB) consortium was able to utilise BW for sulphate reduction. The response surface methodology (RSM)/Box–Behnken design optimum conditions found for sulphate reduction were a pH of 6.99, COD/SO42− of 2.87, and BW concentration of 200.24 mg/L with predicted sulphate reduction of 91.58%. Furthermore, by using an artificial neural network (ANN), a multilayer full feedforward (MFFF) connection with an incremental backpropagation network and hyperbolic tangent as the transfer function gave the best predictive model for sulphate reduction. The ANN optimum conditions were a pH of 6.99, COD/SO42− of 0.50, and BW concentration of 200.31 mg/L with predicted sulphate reduction of 89.56%. The coefficient of determination (R2) and absolute average deviation (AAD) were estimated as 0.97 and 0.046, respectively, for RSM and 0.99 and 0.011, respectively, for ANN. Consequently, ANN was a better predictor than RSM. This study revealed that the exclusive use of BW without supplementation with refined carbon sources in the Postgate medium is feasible and could ensure the economic sustainability of biological sulphate reduction in the South African environment, or in any semi-arid country with significant brewing activity and AMD challenges.


2016 ◽  
Vol 74 (9) ◽  
pp. 1999-2009 ◽  
Author(s):  
Sayed Mohammad Bagher Hosseini ◽  
Narges Fallah ◽  
Sayed Javid Royaee

This study evaluates the advanced oxidation process for decolorization of real textile dyeing wastewater containing azo and disperse dye by TiO2 and UV radiation. Among effective parameters on the photocatalytic process, effects of three operational parameters (TiO2 concentration, initial pH and aeration flow rate) were examined with response surface methodology. The F-value (136.75) and p-value <0.0001 imply that the model is significant. The ‘Pred R-Squared’ of 0.95 is in reasonable agreement with the ‘Adj R-Squared’ of 0.98, which confirms the adaptability of this model. From the quadratic models developed for degradation and subsequent analysis of variance (ANOVA) test using Design Expert software, the concentration of catalyst was found to be the most influential factor, while all the other factors were also significant. To achieve maximum dye removal, optimum conditions were found at TiO2 concentration of 3 g L−1, initial pH of 7 and aeration flow rate of 1.50 L min−1. Under the conditions stated, the percentages of dye and chemical oxygen demand removal were 98.50% and 91.50%, respectively. Furthermore, the mineralization test showed that total organic compounds removal was 91.50% during optimum conditions.


2015 ◽  
Vol 737 ◽  
pp. 321-324
Author(s):  
Rong Yao Wang ◽  
Xi Kui Wang

The degradation of the pharmaceutical paracetamol by using Fenton-like process in conjunction with ultrasonic cavitation was investigated. An evident synergistic effect was found in the combination of sonication and Fenton-like process. Through the application of Response Surface Methodology optimization, the optimum conditions for the degradation of paracetamol were initial pH 3.0, H2O27.0 mmol·L-1and sponge iron 4 g·L-1with acoustic power of 200 W. Under these parameters could obtain 99% degradation of 100mg·L-1paracetamol solution within 30 min treatment.


Sign in / Sign up

Export Citation Format

Share Document