Preparation of Chitosan based Nanofibers: Optimization and Modeling

2016 ◽  
Vol 14 (1) ◽  
pp. 283-288 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar

AbstractThe main objective of the present study is to prepare a chitosan based nanofiber and model the electrospinning process using response surface methodology (RSM). The electrospinning parameters such as collector distance, polymer solution concentration and applied voltage were optimized by using three-variable-three-level Box–Behnken design (BBD). Based on RSM analysis, second order polynomial equation was formed and it indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the individual and interactive effects of process variables on chitosan based nanofiber diameter. The optimum process conditions for the minimum chitosan based nanofiber diameter (0.3 µm) were found to be collector distance of 12 cm, polymer solution concentration of 25% and applied voltage of 6 kV.

2017 ◽  
Vol 48 (1) ◽  
pp. 119-145 ◽  
Author(s):  
Apostolos Baklavaridis ◽  
Ioannis Zuburtikudis ◽  
Costas Panayiotou

Chitosan nanofibers reinforced with tungsten disulfide inorganic nanotubes (INT-WS2) were fabricated in this study. The aim was to investigate the effect of the material parameters and the electrospinning process parameters on the obtained nanofibrous morphology of the mats. The INT-WS2 content, the polymer solution concentration, the electric field strength, and the solution's flow rate were the investigated factors within the framework of response surface methodology. Scanning electron microscopic and image analysis were used for the dimensional characterization of the nanofibrous morphology and the estimation of three selected responses. Two responses were related to the quality of the nanofibrous morphology: the number surface density of the beads ( Nbead) and the average bead-to-fiber diameter ( Dbead/ Dfiber). The third response was indicative of the fiber thickness ( Dfiber). The developed models as well as the coupling and the individual effects of the four investigated factors are given. The results indicate that the electrospun nanofibrous morphology is mostly affected by the polymer solution concentration, the electric field strength and the INT-WS2 loading. Furthermore, the response-surface results reveal possible experimental pathways that may be followed in order to obtain specified nanofibrous chitosan/INT-WS2 morphologies.


2018 ◽  
Vol 49 (7) ◽  
pp. 858-874 ◽  
Author(s):  
Parvaneh Kheirkhah Barzoki ◽  
Masoud Latifi ◽  
Amir Masoud Rezadoust

In this study and for the first time, aligned nanofibers were produced from low molecular weight polyvinyl butyral. Using response surface methodology, the preparation condition of aligned nanofiber was optimized in terms of nanofiber diameter and its structural stability. Central composite design as a response surface methodology was employed and the effects of process variables and their influence on nanofiber diameter were investigated. Based on a statistical analysis, the use of a model, which was used to determine the nanofiber diameter, proved to be successful because of its low probability value (0.0073) and high correlation coefficient (0.9619). A high-speed cylinder collector was used to fabricate aligned polyvinyl butyral nanofibers. The optimum conditions of 17.5 kV voltage, 10 cm collector distance, 13% solution concentration, and 2100 r/min rotational speed were obtained from experiments. The least diameter of 158.6 nm along with a stable structure was determined for polyvinyl butyral nanofiber prepared under the optimum conditions. An aligned polyvinyl butyral nanoweb was applied on the mid-layer of glass-phenolic laminated composites as an interlaminar reinforcement. The fracture behavior of the laminates was determined by end-notched flexure tests. Excellent toughening property which was observed for the aligned polyvinyl butyral nanofibers caused the mode-II fracture toughness and its maximum force to increase by 25.2 and 40.8%, respectively.


2010 ◽  
Vol 29-32 ◽  
pp. 1943-1947 ◽  
Author(s):  
Liang Dong ◽  
Wan Shou ◽  
Yong Liu ◽  
Rui Wang ◽  
Ru Dong Chen

The present work was aimed at studying the effects of process parameters on morphologies of Polyvinyl alcohol (PVA) nanofibers in a novel electrospinning technique, bubble electrospinning. The process was optimized by constructing L 9(34) orthogonal experimental array design. Three factors were investigated and nine tests were run under lower, medium and higher levels of these factors. The results showed that PVA solution concentration plays an important role in affecting the morphologies of PVA nanofibers in bubble electrospinning process. With the increase of the concentration of PVA solution, the morphologies of fibers were changed from beaded fibers to uniform cylinder fibers and the average nanofiber diameter also increased. The optimization process was 12w% for PVA solution, 30kV for applied voltage and 10cm for spinning distance.


2012 ◽  
Vol 268-270 ◽  
pp. 198-201 ◽  
Author(s):  
Xiao Bin Sun ◽  
D. Jia ◽  
Wei Min Kang ◽  
Bo Wen Cheng ◽  
Ya Bin Li

A kind of pullulan biopolymer nanofibers with diameter of 100~700nm were obtained using redistilled water as solvent through electrospinning technology in this paper. The effects of the spinning solution concentration, applied voltage, flow rate and capillary–screen distance on morphology and diameter distribution of pullulan nanofiber were studied by SEM. The results show that, different parameters had great influence on nanofibers’ morphology and diameter. The optimal parameters of pullulan nanofibers electrospinning were: 22wt.% spinning solution concentration, 31 kV voltage, 20 cm capillary–screen distance and 0.5ml/h flow rate.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2052 ◽  
Author(s):  
Liang Wei ◽  
Chengkun Liu ◽  
Xue Mao ◽  
Jie Dong ◽  
Wei Fan ◽  
...  

There is a great limitation to improving the quality and productivity of nanofibers through the conventional single-needle method. Using needleless electrospinning technology to generate multiple jets and enhance the productivity of nanofibers has attracted lots of interest for many years. This study develops a novel linear flume spinneret to fabricate nanofibers. Multiple jets with two rows can be formed simultaneously on the surface of the spinneret. The solution concentration has a significant impact on the average nanofiber diameter compared with applied voltage and collection distance. The effects of different spinning process parameters on the productivity of nanofibers are investigated. High-quality nanofibers with small nanofiber diameter and error can be fabricated successfully. The average nanofiber diameter is 108 ± 26 nm. The average error is 24%. The productivity of nanofibers can reach 4.85 ± 0.36 g/h, which is about 24 times more than that of the single-needle method. This novel linear flume spinneret needleless electrospinning technology exhibits huge potential for mass production of nanofibers in the field of industrialization.


2014 ◽  
Vol 660 ◽  
pp. 140-144
Author(s):  
A. Mataram ◽  
Ahmad Fauzi Ismail ◽  
A.S. Mohruni ◽  
T. Matsura

Effects of material and process parameters on the electrospun polyacrylonitrile fibers were experimentally investigated. Response surface methodology (RSM) was utilized to design the experiments at the setting of solution concentration, voltage and the collector distance. It also imparted the evaluation of the significance of each parameter on pore size, contact angle, modulus young and clean water permeability. Effect of applied voltage in micron-scale fiber diameter was observed to be almost negligible when solution concentration and collector distance were high. However, all three factors were found statistically significant in the production of nano-scale fibers. The response surface predictions revealed the parameter interactions for the resultant fiber diameter, and showed that there is negative correlation between the mean diameter and coefficient of variation for the fiber diameters were in agreement with the experimental results. Response surfaces were constructed to identify the processing window suitable for producing nanoscale fibers. A sub-domain of the parameter space consisting of the solution concentration, applied voltage and collector distance, was suggested for the potential nano scale fiber production.


2010 ◽  
Vol 129-131 ◽  
pp. 365-369 ◽  
Author(s):  
Cheng Kun Liu ◽  
Mei Yu Chen ◽  
Run Jun Sun ◽  
Wei Hua Zhang ◽  
Zhao Huan Zhang ◽  
...  

In electrospinning, outlook of fibrous assembly changes not only with the variation of collecting setups, but with the electrospinning process. For example, formation of multiple jets on a single droplet at special electrospinning conditions can produce several regions of fibrous webs simultaneously, which is bound to bring a great increase of production of nanofibers. The initiation method of multiple jets during electrospinning was derived through an experimental investigation by means of a high-speed camera, which was used to obtain the information of the shape change of a droplet along with process conditions, such as solution concentration, voltage and flow rate. Results showed that multiple jets could be initiated in a controlled manner when droplets experienced several cycles of dripping at relatively high voltages and flow rates in a certain concentration range. An interesting phenomenon of the auto-initiation of double jets was further observed in our experiment.


2013 ◽  
Vol 845 ◽  
pp. 985-988 ◽  
Author(s):  
N.H.A. Ngadiman ◽  
M.Y. Noordin ◽  
Ani Idris ◽  
Denni Kurniawan

Fabrication of nanofibers using electrospinning has recently attracted much attention for various applications due to its simplicity. Electrospinning has the ability to produce nanofibers within 100-500 nm. Some applications require certain fiber diameter. As a relatively new process, there are many electrospinning parameters that are believed to influence the nanofibers diameter. The purpose of this review is to identify and discuss the effect of some of those parameters, i.e. concentration, spinning distance, and applied voltage, and volume flow rate, to the nanofiber diameter during electrospinning process. It was concluded that fiber volume flow rate is proportional to fiber diameter while there is no agreement in reports on other parameters.


2013 ◽  
Vol 843 ◽  
pp. 26-33
Author(s):  
Xue Feng Sun ◽  
Yong Liu ◽  
Jian Liu ◽  
Rui Wang ◽  
Yan Li Hu

Multi-bubble electrospinning is considered as one of efficient techniques which have potential for large scale production of nanofibers. However, there is a lack of published research to better understand the formation of bubbles and the mutual interference among these bubbles. In this paper, the formation methods of multiple bubbles on the free liquid surface were examined to determine which ones performed relatively well. The influence of solution concentration, applied voltage, gas pressure, liquid length and the shape of electrode on the process and morphology of nanofibers were also investigated. The results showed that multiple gas tubes in the solution was the best choice to produce stable multiple bubbles though the number of bubbles was less than that obtained by the other methods. Some important processing parameters, such as solution concentration, applied voltage and the shape of electrode, had an important influence on the morphologies of nanofibers. Finally, both experimental and theoretical investigations in this process proved that the mutual interference among bubbles existed during multi-bubble electrospinning process.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Daniela Lubasova ◽  
Lenka Martinova

A simple and effective method for the fabrication of porous nanofibers based on the solvent evaporation methods in one-step electrospinning process from the commercial polyvinyl butyral (PVB) is presented. The obtained nanofibers are prevalently amorphous with diameters ranging from 150 to 4350 nm and specific surface area of approximately 2–20 m2/g. Pore size with irregular shape of the porous PVB fibers ranged approximately from 50 to 200 nm. The effects of polymer solution concentration, composition of the solvents mixture, and applied voltage on fiber diameter and morphology were investigated. The theoretical approach for the choice of poor and good solvents for PVB was explained by the application Hansen solubility parameter (HSP) and two-dimensional graph. Three basic conditions for the production of porous PVB nanofibers were defined: (i) application of good/poor solvent mixture for spinning solution, (ii) differences of the evaporation rate between good/poor solvent, and (iii) correct ratios of good/poor solvent (v/v). The diameter of prepared porous PVB fibers decreased as the polymer concentration was lowered and with higher applied voltage. These nanofiber sheets with porous PVB fibers could be a good candidate for high-efficiency filter materials in comparison to smooth fibers without pores.


Sign in / Sign up

Export Citation Format

Share Document