scholarly journals Knockdown of NCOA2 Inhibits the Growth and Progression of Gastric Cancer by Affecting the Wnt Signaling Pathway–Related Protein Expression

2020 ◽  
Vol 19 ◽  
pp. 153303382092807
Author(s):  
Zhenlv Lin ◽  
Fan Yang ◽  
Dong Lu ◽  
Wenjie Sun ◽  
Guangwei Zhu ◽  
...  

Objective: The aim of the study is to determine the role of nuclear receptor coactivator 2 in cell proliferation and invasion ability of gastric cancer cells and to explore its possible mechanisms. Methods: Immunohistochemical staining was used to determine NCOA2 gene expression in gastric cancer. Western blotting was used to detect Wnt signal pathways–related protein expression. Colony formation assays, Cell Counting Kit-8 assays, and transwell assays were used to determine cell proliferation, metastasis, and invasion ability of gastric cancer cells. A flow cytometric apoptosis tests determine gastric cancer cell apoptosis ability after inhibition of the expression of nuclear receptor coactivator 2. Subcutaneous mouse models were used to determine the gastric cancer growth and peritoneal metastasis differences after inhibition the expression of nuclear receptor coactivator 2. Results: The expression of nuclear receptor coactivator 2 in gastric cancer cells is high ( P < .01), including lymph node metastasis, TNM staging, and gender differences in nuclear receptor coactivator 2 expression were statistically significant ( P < .01). Short interfering nuclear receptor coactivator 2 could inhibit the proliferation and invasion ability of gastric cancer cells. Short interfering nuclear receptor coactivator 2 promotes the apoptosis of gastric cancer cells. Animal experiments showed that short interfering nuclear receptor coactivator 2 could inhibit the growth and invasion of gastric cancer-transplantable tumors. Knockdown of the expression of nuclear receptor coactivator 2 inhibited the Wnt/β-catenin signaling pathway in the gastric cancer cells. Conclusions: Knockdown of the expression of nuclear receptor coactivator 2 can inhibit the proliferation and invasion of human gastric cancer in vitro and in vivo. The underlying mechanism of NOCA2 affects the Wnt signaling pathway.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hong Chen ◽  
Lu Xu ◽  
Zhi-li Shan ◽  
Shu Chen ◽  
Hao Hu

Abstract Background Glutathione Peroxidase 8 (GPX8) as a member of the glutathione peroxidase (GPx) family plays an important role in anti-oxidation. Besides, dysregulation of GPX8 has been found in gastric cancer, but its detailed molecular mechanism in gastric cancer has not been reported. Methods Our study detected the expression of GPX8 in gastric cancer tissues and cell lines using immunohistochemistry (IHC), western blot and qRT-PCR, and determined the effect of GPX8 on gastric cancer cells using CCK-8, colony formation, transwell migration and invasion assays. Besides, the effect of GPX8 on the Wnt signaling pathway was determined by western blot. Furthermore, the transcription factor of GPX8 was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. In addition, the effect of GPX8 on tumor formation was measured by IHC and western blot. Results The over-expression of GPX8 was observed in gastric cancer tissues and cells, which facilitated the proliferation, migration and invasion of gastric cancer cells as well as the tumor growth. GPX8 knockdown effectively inhibited the growth of gastric cancer cells and tumors. Moreover, GPX8 could activate the Wnt signaling pathway to promote the cellular proliferation, migration and invasion through. Furthermore, FOXC1 was identified as a transcription factor of GPX8 and mediated GPX8 expression to affect cell development processes. Conclusions These findings contribute to understanding the molecular mechanism of GPX8 in gastric cancer. Additionally, GPX8 can be a potential biomarker for gastric cancer therapy.


2020 ◽  
Author(s):  
Rui Su ◽  
Enhong Zhao ◽  
Jun Zhang

Abstract MiRNA operates as a tumor suppressor or carcinogen to regulate cell proliferation, metastasis, invasion, differentiation, apoptosis and metabolic process. In the present research, we investigated the effect and mechanism of miR496 in human gastric cancer cells. Cell proliferation was measured by CCK8 and clonogenic assay. Transwell test was performed to detect cell migration and invasion. Flow cytometry analysis was used to evaluate cell apoptosis. Bioinformatics software targetscan was used for the screening of miR-496’s target gene. MiR-496 was down regulated in three gastric cancer cell lines, SGC-790, AGS and MKN45 compared with normal gastric epithelial cell line GES-1. MiR-496 mimics inhibited the proliferation of AGS cells after the transfection for 48 h and 72 h. The migration and invasion of AGS cells were also inhibited by the transfection of miR-496 mimics. In addition, miR-496 mimics induced the apoptosis through up regulating the levels of Bax and Active Caspase3 and down regulating the levels of Bcl-2 and Total Caspase3. Bioinformatics analysis showed that there was a binding site between miR-496 and LYN kinase (LYN). MiR-496 mimics could inhibit the expression of LYN in AGS cells. The overexpression of LYN blocked the inhibition of tumor cell growth, as well as the inhibition of AKT/mTOR signaling pathway induced by miR-496 in gastric cancer cells. In conclusion, miR-496 inhibited the proliferation through the AKT/mTOR signaling pathway via targeting LYN in gastric cancer cells. Our research provides a new potential target for clinical diagnosis and targeted treatment of gastric cancer.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Zhenzhen Wen ◽  
Ming Chen ◽  
Wenhao Guo ◽  
Ke Guo ◽  
Ping Du ◽  
...  

Oncology ◽  
2019 ◽  
Vol 97 (5) ◽  
pp. 311-318 ◽  
Author(s):  
Da Hyun Jung ◽  
Yoo Jin Bae ◽  
Jie-Hyun Kim ◽  
You Keun Shin ◽  
Hei-Cheul Jeung

Author(s):  
Yizhuo LU ◽  
Lianghui LI ◽  
Guoyang WU ◽  
Huiqin ZHUO ◽  
Guoyan LIU ◽  
...  

Background: We aimed to investigate the effect of PI3K/Akt signaling pathway on PRAS40Thr246 phosphorylation in gastric cancer cells. Methods: The study was conducted from April 2017 to January 2018 in Zhongshan Hospital, Xiamen University, Xiamen, China. Gastric cancer cells were divided into three groups: gastric cancer cell group, LY294002 group and MK-2206 group. Specific tests were conducted accordingly. Results: Inhibition of PI3K/Akt signaling pathway activation and PRAS40Thr246 phosphorylation could inhibit proliferation and invasion and promote apoptosis of gastric cancer cells, and PRAS40Thr246 phosphorylation could activate PI3K/Akt signaling pathway. Conclusion: The levels of PI3K/Akt signaling pathway related proteins and p-PRAS40Thr246 were significantly increased in gastric cancer cells. p-PRAS40-Thr246 was able to reflect the activation of the PI3K/Akt signaling pathway, reflecting the sensitivity of the PI3K/AKT signaling pathway to inhibitors.


2019 ◽  
Vol 9 (10) ◽  
pp. 1381-1387
Author(s):  
Wanjun Jia ◽  
Yabin Zhang ◽  
Ruian Wang

To investigate the impact of miRNA-206 on the transcriptional expression of EVI1 gene and activation of Akt/JNK signaling pathway in gastric cancer cells, and to provide a new idea for gene-targeted therapy of gastric cancer. The miRNA-206 transfection experiment was firstly used to verify the regulation of EVI1. The experiment was divided into three groups: miRNA-206 mimics (100 nM), miRNA-206 inhibitor (100 nM), miR-NC (100 nM), and transfected into gastric cancer cells sgc7901, Western blot. EVI1 protein expression was detected; then the signal transduction and biological behavior of the cells were verified by miRNA-206 lentiviral vector transfection experiments. The experiment was divided into three groups: pLB-miRNA-206 group, empty vector group and control group (sgc7901 cell group). miRNA-206 and EVI1 mRNA levels were detected by real-time fluorescence quantitative (RT-PCR), and p-Akt and p-JNK were detected by Western blot. Protein expression, cell proliferation was quantified by MTT assay, and the alteration of cell cycle were detected by flow cytometry. miRNA-206 may affect the cell proliferation and division cycle by targeting the regulation of EVI1 transcriptional gene expression and activation of Akt/JNK signaling pathway in gastric cancer cells, and it is expected to provide an important selection site for gene-targeted therapy of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document