scholarly journals MiR-196b Promotes the Invasion and Migration of Lung Adenocarcinoma Cells by Targeting AQP4

2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.

2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC.Methods:Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Woundhealing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelialmesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Westernblot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo.Results:miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promotedNPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the oppositeresults. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotesNPC growth and metastasis in vivo.Conclusions:Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
Ming Yang ◽  
Shijuan Sun ◽  
Yao Guo ◽  
Junjie Qin ◽  
Guangming Liu

Abstract Background Pancreatic cancer (PC) is a type of malignant gastrointestinal tumor. Long non-coding RNA MCM3AP antisense RNA 1 (MCM3AP-AS1) has been reported to stimulate proliferation, migration and invasion in several types of tumors. However, the role of MCM3AP-AS1 in PC remains unclear. Methods MCM3AP-AS1, microRNA miR-138-5p (miR-138-5p) and FOXK1 levels were detected using quantitative real time PCR. Cell proliferation, migration and invasion were analyzed. Dual luciferase reporter assay was used to confirm the relationship between MCM3AP-AS1 and miR-138-5p, between miR-138-5p and FOXK1. Protein levels were identified using western blot analysis. Results MCM3AP-AS1 overexpression promoted proliferation, migration and invasion in PC cells. MCM3AP-AS1 silencing showed a suppressive effect on cell growth in PC cells. Moreover, MCM3AP-AS1 knockdown suppressed tumor growth in mice. Dual luciferase reporter assay demonstrated MCM3AP-AS1 could sponge microRNA-138-5p (miR-138-5p), and FOXK1 could bind with miR-138-5p. Positive correlation between MCM3AP-AS1 and FOXK1 was testified, as well as negative correlation between miR-138-5p and FOXK1. MCM3AP-AS1 promoted FOXK1 expression by targeting miR-138-5p, and MCM3AP-AS1 facilitated growth and invasion in PC cells by FOXK1. Conclusion MCM3AP-AS1 promoted growth and migration through modulating miR-138-5p/FOXK1 axis in PC, providing insights into MCM3AP-AS1/miR-138-5p/FOXK1 axis as novel candidates for PC therapy from bench to clinic.


2021 ◽  
Vol 20 (11) ◽  
pp. 2279-2285
Author(s):  
Shenglin Wu ◽  
Shan Nie ◽  
Jian Wang

Purpose: To investigate the role and mechanism of microRNA-206 (miR-206) in cytoskeleton reorganization in melanoma cells. Methods: MiR-206 and RNA helicase p68 (DDX5) expression levels were measured in A375, A875, and HEM-M cells by quantitative real time polymerase chain reaction (qRT-PCR). A DDX5 overexpression cell line was constructed, and DDX5 overexpression, A375, and A875 cells were transfected with miR-206 mimic or DDX5 small interfering RNA (siRNA). Transwell assay was used to assess cell migration and invasion of A375 and A875 cells, while Luciferase reporter assay was used to determine the putative target of miR-206. DDX5, miR-206, vinculin, coronin3, and ezrin expression levels were evaluated by qRT-PCR. Protein expressions of DDX5, vinculin, coronin3, and ezrin were evaluated by western blot analysis. Results: DDX5 expression was higher and miR-206 expression lower in A375 and A875 cells when compared to HEM-M cells (p < 0.05). Knockdown of DDX5 and overexpression of miR-206 repressed invasion and migration, and inhibited expression of vinculin, coronin3, and ezrin in A375 and A875 cells (p < 0.05). However, overexpression of DDX5 reversed the effect of miR-206 on cytoskeletal protein expression. Luciferase reporter assay data confirmed that DDX5 is a direct target of miR-206 (p < 0.05). Conclusion: MiR-206 suppresses reorganization of the cytoskeleton in melanoma cells by targeting DDX5, and is thus, a promising target for the treatment of melanoma.


2020 ◽  
Author(s):  
Liu Yang ◽  
Yinan Zhang ◽  
Jun Bao ◽  
Ji-Feng Feng

Abstract Background: It has been well documented that long non-coding RNAs (lncRNAs) regulate numerous characteristics of cancer, including proliferation, migration, metastasis, apoptosis, and even metabolism. LncRNA BCYRN1 (BCYRN1) is a newly identified brain cytoplasmic lncRNA with 200 nucleotides that was discovered to be highly expressed in tumour tissues, including those of hepatocellular carcinoma, gastric cancer and lung cancer. However, the roles of BCYRN1 in colorectal cancer (CRC) remain obscure. This study was designed to reveal the role of BCYRN1 in the occurrence and progression of CRC.Methods: RT-PCR was used to detect the expression level of BCYRN1 in tumour tissues and CRC cell lines. BCYRN1 was knocked down in CRC cells, and cell proliferation changes were evaluated by cell counting kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), and Ki-67 and proliferating cell nuclear antigen (PCNA) expression assays. Cell migration and invasion changes were evaluated by wound healing, Transwell and invasion-related protein expression assays. Flow cytometry analysis was used to assess whether BCYRN1 regulates the apoptosis of CRC cells. The dual luciferase reporter gene detects the competitive binding of BCYRN1 to miR-204-3p. In vivo experiments were performed to evaluate the effect of BCYRN1 on tumour development. TargetScan analysis and dual luciferase reporter gene assays were applied to detect the target gene of miR-204-3p. Rescue experiments verified that BCYRN1 affects CRC by regulating the effect of miR-204-3p on KRAS.Results: We found that compared with normal tissues and human intestinal epithelial cells (HIECs), CRC tumour tissues and cell lines had significantly increased BCYRN1 levels. We further determined that knockdown of BCYRN1 inhibited the proliferation, migration, and invasion and promoted the apoptosis of CRC cells. In addition, bioinformatics analysis and dual luciferase reporter assay showed that BCYRN1 served as a competitive endogenous RNA (ceRNA) to regulate the development of CRC through competitively binding to miR-204-3p. Further studies proved that overexpression of miR-204-3p reversed the effects of BCYRN1 on CRC. Next, TargetScan analysis and dual luciferase reporter assay indicated that KRAS is a target gene of miR-204-3p and is negatively regulated by miR-204-3p. A series of rescue experiments showed that BCYRN1 affected the occurrence and development of CRC by regulating the effects of miR-204-3p on KRAS. In addition, tumorigenesis experiments in a CRC mouse model confirmed that BCYRN1 downregulation effectively inhibited tumour growth.Conclusions: Our findings suggest that BCYRN1 plays a carcinogenic role in CRC by regulating the miR-204-3p/KRAS axis.


2018 ◽  
Vol 49 (4) ◽  
pp. 1564-1576 ◽  
Author(s):  
Hong-Ming Zhu ◽  
Xue-Song Jiang ◽  
Hui-Zi Li ◽  
Lu-Xi Qian ◽  
Ming-Yu Du ◽  
...  

Background/Aims: A recent study found that dysregulated microRNA-184 (miR-184) is involved in the proliferation and survival of nasopharyngeal carcinoma (NPC). This study aimed to evaluate the detailed mechanisms of invasion, migration and metastasis of NPC cells. Methods: Quantitative reverse-transcription PCR (qRT-PCR) and Western blot were used to confirm the expression levels of miR-184 and Notch2. NPC cell invasion and migration were subsequently examined using in vitro cell invasion and wound-healing assays, respectively. MicroRNA (miRNA) target gene prediction databases and dual-luciferase reporter assay were adopted to validate the target genes of miR-184. Results: MiR-184 was downregulated in the NPC cell lines. The miR-184 inhibitor increased the number of invading NPC cells, whereas miR-184 mimics inhibited the invasive ability of such cells. The protein level of E-cadherin decreased, whereas those of N-cadherin and vimentin increased in the anti-miR-184 group. This result showed that miR-184 inhibited NPC cell invasion and metastasis by regulating EMT progression. MiRNA target gene prediction databases indicated the potential of Notch2 as a direct target gene of miR-184. Such a notion was then validated by results of dual-luciferase reporter assay. Notably, shRNANotch2 restrained the EMT and partially abrogated the inhibitory effects of miR-184 on EMT progression in NPC cells. Conclusion: MiR-184 functions as a tumour-suppressive miRNA targeting Notch2 and inhibits the invasion, migration and metastasis of NPC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Liu Yang ◽  
Yinan Zhang ◽  
Jun Bao ◽  
Ji-Feng Feng

Abstract Background It has been well documented that long non-coding RNAs (lncRNAs) regulate numerous characteristics of cancer, including proliferation, migration, metastasis, apoptosis, and even metabolism. LncRNA BCYRN1 (BCYRN1) is a newly identified brain cytoplasmic lncRNA with 200 nucleotides that was discovered to be highly expressed in tumour tissues, including those of hepatocellular carcinoma, gastric cancer and lung cancer. However, the roles of BCYRN1 in colorectal cancer (CRC) remain obscure. This study was designed to reveal the role of BCYRN1 in the occurrence and progression of CRC. Methods RT-PCR was used to detect the expression level of BCYRN1 in tumour tissues and CRC cell lines. BCYRN1 was knocked down in CRC cells, and cell proliferation changes were evaluated by cell counting kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), and Ki-67 and proliferating cell nuclear antigen (PCNA) expression assays. Cell migration and invasion changes were evaluated by wound healing, Transwell and invasion-related protein expression assays. Flow cytometry analysis was used to assess whether BCYRN1 regulates the apoptosis of CRC cells. The dual luciferase reporter gene detects the competitive binding of BCYRN1 to miR-204-3p. In vivo experiments were performed to evaluate the effect of BCYRN1 on tumour development. TargetScan analysis and dual luciferase reporter gene assays were applied to detect the target gene of miR-204-3p. Rescue experiments verified that BCYRN1 affects CRC by regulating the effect of miR-204-3p on KRAS. Results We found that compared with normal tissues and human intestinal epithelial cells (HIECs), CRC tumour tissues and cell lines had significantly increased BCYRN1 levels. We further determined that knockdown of BCYRN1 inhibited the proliferation, migration, and invasion and promoted the apoptosis of CRC cells. In addition, bioinformatics analysis and dual luciferase reporter assay showed that BCYRN1 served as a competitive endogenous RNA (ceRNA) to regulate the development of CRC through competitively binding to miR-204-3p. Further studies proved that overexpression of miR-204-3p reversed the effects of BCYRN1 on CRC. Next, TargetScan analysis and dual luciferase reporter assay indicated that KRAS is a target gene of miR-204-3p and is negatively regulated by miR-204-3p. A series of rescue experiments showed that BCYRN1 affected the occurrence and development of CRC by regulating the effects of miR-204-3p on KRAS. In addition, tumorigenesis experiments in a CRC mouse model confirmed that BCYRN1 downregulation effectively inhibited tumour growth. Conclusions Our findings suggest that BCYRN1 plays a carcinogenic role in CRC by regulating the miR-204-3p/KRAS axis.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Juntong Wang ◽  
Jingshun Gu ◽  
Aiwu You ◽  
Jun Li ◽  
Yuyan Zhang ◽  
...  

Abstract Objective: The role of lncRNAs in tumor has been widely concerned. The present study took HAS2-AS1 (the antisense RNA 1 of HAS2) as a starting point to explore its expression in glioma and its role in the process of migration and invasion, providing a strong theoretical basis for mining potential therapeutic targets of glioma. Methods: Clinical data of glioma were obtained from The Cancer Genome Atlas (TCGA) database and differentially expressed lncRNAs were analyzed by edgeR. The hTFtarget database was used to predict the upstream transcription factors of HAS2-AS1 and the JASPAR website was used to predict the binding sites of human upstream transcription factor 1 (USF1) and HAS2-AS1. qRT-PCR was used to detect the expressions of HAS2-AS1 and USF1 in glioma tissues and cell lines. The effects of silencing HAS2-AS1 on the migration and invasion of cancer cells were verified by wound healing and Transwell invasion assays. The chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were applied to demonstrate the binding of USF1 and HAS2-AS1 promoter region. Western blot was used to detect the expressions of epithelial–mesenchymal transition (EMT)-related proteins. Results: HAS2-AS1 was highly expressed in glioma tissues and cells, and was significantly associated with poor prognosis. Silencing HAS2-AS1 expression inhibited glioma cell migration, invasion and EMT. USF1 was highly expressed in glioma and positively correlated with HAS2-AS1. The transcription of HAS2-AS1 was activated by USF1 via binding to HAS2-AS1 promoter region, consequently potentiating the invasion and migration abilities of glioma cells. Conclusion: These results suggested that the transcription factor USF1 induced up-regulation of lncRNA HAS2-AS1 and promoted glioma cell invasion and migration.


2019 ◽  
Author(s):  
Hui Wang ◽  
Hui Hu ◽  
Zhenzhao Luo ◽  
Shuiyi Liu ◽  
Wangze Wu ◽  
...  

Abstract The abnormal expression of HPV16 E6/E7 activates oncogenes and/or inactivates tumor suppressor genes, resulting in the selective growth and malignant transformation of cancer cells. miR-4454 was selected by sequencing due to its abnormal high expression in HPV16 E6/E7 positive CaSki cell compared with HPV16 E6/E7 negative C33A cell. Overexpression of miR-4454 enhances cervical cancer cell invasion and migration. ABHD2 and NUDT21 is identified as a target gene of miR-4454.The effects of ABHD2 and NUDT21 on migration and invasion of CaSki and C33A cells were determined. The dual luciferase and RT-qPCR assays confirmed that miR-4454 might regulate its targets ABHD2 and NUDT21 to promote the proliferation, invasion and migration, whereas, inhibit the apoptosis in CaSki and C33A cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382098010
Author(s):  
Chuan Cheng ◽  
Huixia Li ◽  
Jiujian Zheng ◽  
Jie Xu ◽  
Peng Gao ◽  
...  

Objective: LncRNAs are non-coding RNAs exerting vital roles in the occurrence and development of various cancer types. This study tended to describe the expression pattern of FENDRR in colorectal cancer (CRC), and further investigate the role of FENDRR in CRC cell biological behaviors. Methods: Gene expression profile of colon cancer was accessed from the TCGA database, and then processed for differential analysis for identification of differentially expressed lncRNAs and miRNAs. Some in vitro experiments like qRT-PCR, MTT, colony formation assay, wound healing assay and Transwell assay were performed to assess the effect of FENDRR on cell biological behaviors. Dual-luciferase reporter assay was conducted to further validate the targeting relationship between FENDRR and miR-424-5p, and rescue experiments were carried out for determining the mechanism of FENDRR/miR-424-5p underlying the proliferation, migration and invasion of CRC cells. Results: Bioinformatics analysis suggested that FENDRR was significantly down-regulated in CRC tissue, and low FENDRR was intimately correlated to poor prognosis. FENDRR overexpression could greatly inhibit cell proliferation, migration and invasion. Besides, there was a negative correlation between FENDRR and miR-424-5p. Dual-luciferase reporter assay indicated that miR-424-5p was a direct target of FENDRR. Rescue experiments discovered that FENDRR exerted its role in cell proliferation, migration and invasion in CRC via targeting miR-424-5p. Conclusion: FENDRR is poorly expressed in CRC tissue and cells, and low FENDRR is responsible for the inhibition of cell proliferation, migration and invasion of CRC by means of targeting miR-424-5p.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Mingli Suo ◽  
Yanfei Sun ◽  
Hailan Yang ◽  
Jing Ji ◽  
Yinfang He ◽  
...  

Abstract Preeclampsia (PE), a common obstetrical disorder, is characterized by impaired migration and invasion abilities of trophoblastic cells. MicroRNA-183-5p (miR-183) was reported to regulate cell migration and invasion in various types of human cancers; however, its role in the pathogenesis of PE remains elusive. Herein, we investigated the role of miR-183 in HTR-8/SVneo trophoblast cells invasion and migration and explored the underlying mechanism. Our results showed that miR-183 was significantly up-regulated in placental tissues from pregnant women compared with that in normal pregnant women. Overexpression of miR-183 inhibited proliferation, migration and invasion, as well as induced apoptosis in HTR-8/SVneo cells. Otherwise, down-regulation of miR-183 achieved the opposite effects. Bioinformatics prediction and luciferase reporter assay confirmed that matrix metalloproteinase-9 (MMP-9) is a target of miR-183. In addition, MMP-9 expression was significantly down-regulated, and inversely correlated with the miR-183 level in placental tissues from pregnant women with severe PE. Down-regulation of MMP-9 suppressed the trophoblast cell invasion and migration, whereas overexpression of MMP-9 promoted cell invasion and migration in HTR-8/SVneo cells. More importantly, up-regulation of MMP-9 reversed the inhibitory effects of miR-183 on cell invasion and migration in trophoblast cells. Collectively, our findings suggested that miR-183 may play critical roles in the pathogenesis of PE and serve as a potential biomarker for severe PE.


Sign in / Sign up

Export Citation Format

Share Document