Wound Healing in the Golden Agers: What We Know and the Possible Way Ahead

Author(s):  
Aakansha Giri Goswami ◽  
Somprakas Basu ◽  
Vijay Kumar Shukla

While “population aging” is an accomplishment that deserves acclamation, it is in itself a tremendous challenge. Age-related skin changes, impaired wound healing, and concurrent comorbidities are the deadly triad that contribute most to the development of nonhealing chronic wounds in the elderly. This imposes enormous medical, social, and financial burden. With the rising trend in the aging population, this problem is likely to exacerbate unless multidisciplinary, rapt wound care strategies are developed. The last decade was dedicated to understand the basic biology underlying the wound healing process but most in vitro and animal model studies translated poorly to human conditions. Forthcoming, the focus is on the development of diagnostic and therapeutic strategies to improve healing in this vulnerable age group. Further, understanding the complex pathobiology of cellular senescence and wound healing process is required to develop focused therapy for these “problem wounds” in the elderly.

2019 ◽  
Vol 26 (31) ◽  
pp. 5825-5848 ◽  
Author(s):  
Nicoletta Polera ◽  
Mariateresa Badolato ◽  
Filomena Perri ◽  
Gabriele Carullo ◽  
Francesca Aiello

Giving a glance to the report of Wound Care Market by Product updated in 2017, we can see that wound care market is expected to reach USD 22.01 billion by 2022 from USD 18.35 billion at a CAGR of 3.7%. Numerous factors are driving the growth of this market, including the increasing prevalence of chronic wounds and acute wounds, increasing aged population, rising R&D activities and advancement in the field of wound care research. Advanced wound management products are accounted for the largest market share in 2017. These evidences mean that the wound care research represents a Clinical Emergency other than an interesting Marketing tool. Drug therapies so far fight efficaciously with the opportunistic pathologies derived from chronic wounds, although an unsolved challenge is still finding a useful remedy to correct the impaired wound healing process and overcome the chronic wound state, to avoid bacterial rising and severe pain. Traditional medicinal plants have been widely used in the management of wounds and different plant extracts have been evaluated for their wound healing properties through both in vitro and in vivo studies. Their phytochemical components in particular quercetin, contribute to their remedial properties in wound repair. Quercetin has important biological activities related to the improvement of the wound healing process. The present review discusses and focuses on the latest findings of the wound healing properties of quercetin, alone or as a part of plant extract, and its role as a new frontier in wound repair.


Author(s):  
Davide Vincenzo Verdolino ◽  
Helen A. Thomason ◽  
Andrea Fotticchia ◽  
Sarah Cartmell

Chronic wounds represent an economic burden to healthcare systems worldwide and a societal burden to patients, deeply impacting their quality of life. The incidence of recalcitrant wounds has been steadily increasing since the population more susceptible, the elderly and diabetic, are rapidly growing. Chronic wounds are characterised by a delayed wound healing process that takes longer to heal under standard of care than acute (i.e. healthy) wounds. Two of the most common problems associated with chronic wounds are inflammation and infection, with the latter usually exacerbating the former. With this in mind, researchers and wound care companies have developed and marketed a wide variety of wound dressings presenting different compositions but all aimed at promoting healing. This makes it harder for physicians to choose the correct therapy, especially given a lack of public quantitative data to support the manufacturers’ claims. This review aims at giving a brief introduction to the clinical need for chronic wound dressings, focusing on inflammation and evaluating how bio-derived and synthetic dressings may control excess inflammation and promote healing.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


2019 ◽  
Vol 9 (19) ◽  
pp. 4172 ◽  
Author(s):  
Hina Sattar ◽  
Imran Sarwar Bajwa ◽  
Riaz Ul-Amin ◽  
Aqsa Mahmood ◽  
Waheed Anwar ◽  
...  

Skin wound healing is influenced by two kinds of environment i.e., exterior environment that is nearby to wound surface and interior environment that is the environment of the adjacent part under wound surface. Both types of environment play a vital role in wound healing, which may contribute to continuous or impaired wound healing. Although, different previous studies provided wound care solutions, but they focused on single environmental factors either wound moisture level, pH value or healing enzymes. Practically, it is insignificant to consider environmental effect by determination of single factors or two, as both types of environment contain a lot of other factors which must be part of investigation e.g., smoke, air pollution, air humidity, temperature, hydrogen gases etc. Also, previous studies didn’t classify overall healing either as continuous or impaired based on exterior environment effect. In current research work, we proposed an effective wound care solution based on exterior environment monitoring system integrated with Neural Network Model to consider exterior environment effect on wound healing process, either as continuous or impaired. Current research facilitates patients by providing them intelligent wound care solution to monitor and control wound healing at their home.


2002 ◽  
Vol 4 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Beverly B. Childress ◽  
Joyce K. Stechmiller

Chronic wounds mainly affect elderly individuals and persons with comorbid diseases due to a compromised immune status. An age-related decline in immune function deters proper healing of wounds in an orderly and timely manner. Thus, older adults with 1 or more concomitant illnesses are more likely to experience and suffer from a nonhealing wound, which may drastically decrease their quality of life and financial resources. Novel therapies in wound care management rely heavily on our current knowledge of wound healing physiology. It is well established that normal wound healing occurs sequentially and is strictly regulated by pro-inflammatory cytokines and growth factors. A multitude of commercial products such as growth factors are available; however, their effectiveness in healing chronic wounds has yet to be proven. Recently, investigators have implicated nitric oxide (NO) in the exertion of regulatory forces on various cellular activities of the inflammatory and proliferative phases of wound healing. Gene therapy in animal studies has shown promising results and is furthering our understanding of impaired wound healing. The purpose of this article is to review the literature on NO and its role in wound healing. A discussion of the physiology of normal healing and the pathophysiology of chronic wounds is provided.


2021 ◽  
Author(s):  
Priyanka Chhabra ◽  
Kajol Bhati

Abnormal wound healing represents a major healthcare issue owing to upsurge number of trauma and morbid physiology which ultimately posed a healthcare burden on patient, society and health care organization. A wound healing is a complex process so effective management of chronic wounds is often hard. Recently in addition to many conventional wound treatment’s advances in bionanomaterial are attaining much attention in wound care and skin tissue engineering. Bionanomaterials are biomolecule-based nanocomposite synthesized by plants, microbes and animals which possess high degree of biocompatibility, biodegradability, non-toxicity and bioactive assets. Bioactive assets like antimicrobial, immune modulatory, cell proliferation and angiogenesis of biomolecules forms fortunate microenvironment for the wound healing process. Nature has provided us with a significant set of biomolecules like chitosan, hyaluronic acid, collagen, cellulose, silk fucoidan etc. have been exploited to construct engineered bionanomaterials. These biopolymeric nanomaterials are currently researched comprehensively as they have higher surface to volume ratio and high chemical affinity showing a promising augmentation of deadly wounds. In this chapter we aimed to highlight the biological sources and bioengineering approaches adapted for biopolymers so they facilitate wound healing process.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4610
Author(s):  
Hye-Jin Lee ◽  
Moses Jeong ◽  
Young-Guk Na ◽  
Sung-Jin Kim ◽  
Hong-Ki Lee ◽  
...  

Nanostructured lipid carriers (NLC) are capable of encapsulating hydrophilic and lipophilic drugs. The present study developed an NLC containing epidermal growth factor (EGF) and curcumin (EGF–Cur-NLC). EGF–Cur-NLC was prepared by a modified water-in-oil-in-water (w/o/w) double-emulsion method. The EGF–Cur-NLC particles showed an average diameter of 331.8 nm and a high encapsulation efficiency (81.1% and 99.4% for EGF and curcumin, respectively). In vitro cell studies were performed using two cell types, NIH 3T3 fibroblasts and HaCaT keratinocytes. The results showed no loss of bioactivity of EGF in the NLC formulation. In addition, EGF–Cur-NLC improved in vitro cell migration, which mimics the wound healing process. Finally, EGF–Cur-NLC was evaluated in a chronic wound model in diabetic rats. We found that EGF–Cur-NLC accelerated wound closure and increased the activity of antioxidant enzymes. Overall, these results reveal the potential of the NLC formulation containing EGF and curcumin to promote healing of chronic wounds.


2018 ◽  
Vol 132 (15) ◽  
pp. 1629-1643 ◽  
Author(s):  
Patricia E. Martin ◽  
Erin M. O’Shaughnessy ◽  
Catherine S. Wright ◽  
Annette Graham

Impaired wound healing and ulceration caused by diabetes mellitus, is a significant healthcare burden, markedly impairs quality of life for patients, and is the major cause of amputation worldwide. Current experimental approaches used to investigate the complex wound healing process often involve cultures of fibroblasts and/or keratinocytes in vitro, which can be limited in terms of complexity and capacity, or utilisation of rodent models in which the mechanisms of wound repair differ substantively from that in humans. However, advances in tissue engineering, and the discovery of strategies to reprogramme adult somatic cells to pluripotency, has led to the possibility of developing models of human skin on a large scale. Generation of induced pluripotent stem cells (iPSCs) from tissues donated by diabetic patients allows the (epi)genetic background of this disease to be studied, and the ability to differentiate iPSCs to multiple cell types found within skin may facilitate the development of more complex skin models; these advances offer key opportunities for improving modelling of wound healing in diabetes, and the development of effective therapeutics for treatment of chronic wounds.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Atiqah Salleh ◽  
Mh Busra Fauzi

Wound is defined as primarily damaged or disruption of skin contributed to the loss of its microstructure stability and which undergoes complex wound healing process. However, there are tons of factors that could affect the wound healing process such as infection and slow angiogenesis. Involvement of nanotechnologies therapies in wound care research aims to facilitates this healing process. Quantum dots (QDs) are an advanced nanomaterial technology found to be useful in clinical and biomedical applications. This review has been carried out to provide a summary of the application of QDs in acute or chronic wound healing. A thorough searching was done via Web of Science and SCOPUS database to obtain relevant articles including the in vivo, in vitro and in ovo studies. The results demonstrated a similar effect of different types of QDs, or an improvement of QDs in wound healing, antibacterial and angiogenesis properties. This review demonstrated the effectiveness of QDs for the wound healing process mainly by their antibacterial activity. Uniquely, the antibacterial effect unraveled an increasing trend over time influenced by the various concentration of QDs. In conclusion, the application of QDs support the wound healing phases and proven to be effective in vivo, in vitro and in ovo. However, the future QDs work should focus on the molecular level for the details of cellular interactions and pathways.


Sign in / Sign up

Export Citation Format

Share Document