scholarly journals Combination of Sasa quelpaertensis Nakai Leaf Extract and Cisplatin Suppresses the Cancer Stemness and Invasion of Human Lung Cancer Cells

2014 ◽  
Vol 13 (6) ◽  
pp. 529-540 ◽  
Author(s):  
Mina Kim ◽  
Yoo-Sun Kim ◽  
Kyung-Mi Kim ◽  
Hee-Chul Ko ◽  
Se-Jae Kim ◽  
...  

Lung cancer is the leading cause of cancer death worldwide, and most chemotherapeutic drugs have limited success in treating this disease. Furthermore, some drugs show undesirable side effects due to the enrichment of cancer stem cells (CSCs) that are present, leading to resistance to conventional chemotherapy and tumor relapse. CSCs possess self-renewal characteristics, aggressive tumor initiating activity, and ability to facilitate tumor metastasis. Therefore, development of nontoxic agents that can potentiate chemotherapy and eliminate CSCs would be highly desirable. In the present study, we investigated whether Sasa quelpaertensis leaf extracts (SQE) and cisplatin (CIS), individually or in combination, would exert anti-CSC and antimetastatic effect in H1299 and A549 human lung cancer cells. Following these treatments, cell growth, phosphorylation of phosphoinositide-3 kinase, and activation of the mammalian target of rapamycin were inhibited. Decreased serial sphere formation, clonogenicity, and expression of major stem cell markers, such as CD44 and SOX-2, in CD44+ cancer stem cells were also observed. In addition, inhibition of cell migration and invasion in both cell lines as well as inhibition of matrix metalloproteinase-2 activity and expression were detected. Importantly, the anticancer stemness and antimetastasis effects in each of these assays were greater for the combined treatment with SQE and CIS than with each treatment individually. In conclusion, the data suggest that SQE alone, or in combination with CIS, represents a promising therapeutic strategy for eliminating cancer stemness and cell invasion potential of CSCs, thereby treating and preventing metastatic lung cancer cells.

2021 ◽  
Vol 14 (11) ◽  
pp. 1169
Author(s):  
Hussein Hamad ◽  
Birgitte Brinkmann Olsen

Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations. Furthermore, we found that CBD activated the effector caspases 3/7, increased the expression of pro-apoptotic proteins, increased the levels of reactive oxygen species, as well as a leading to a loss of mitochondrial membrane potential in both populations. We also found that CBD decreased self-renewal, a hallmark of cancer stem cells. Overall, our results suggest that CBD is effective against the otherwise treatment-resistant cancer stem cells and joins a growing list of compounds effective against cancer stem cells. The effects and mechanisms of CBD in cancer stem cells should be further explored to find their Achilles heel.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Lingyan Wang ◽  
Jiayun Hou ◽  
Minghuan Zheng ◽  
Lin Shi

Actinidia Chinensis Planch roots (acRoots) are used to treat many cancers, although the anti-tumor mechanism by which acRoots inhibit cancer cell growth remains unclear. The present study aims at investigating inhibitory effects of acRoots on human lung cancer cells and potential mechanisms. Our data demonstrate that the inhibitory effects of acRoots on lung cancer cells depend on genetic backgrounds and phenotypes of cells. We furthermore found the expression of metabolism-associated gene profiles varied between acRoots-hypersensitive (H460) or hyposensitive lung cancer cells (H1299) after screening lung cancer cells with different genetic backgrounds. We selected retinoic acid receptor beta (RARB) as the core target within metabolism-associated core gene networks and evaluated RARB changes and roles in cells treated with acRoots at different concentrations and timeframes. Hypersensitive cancer cells with the deletion of RARB expression did not response to the treatment with acRoots, while RARB deletion did not change effects of acRoots on hyposensitive cells. Thus, it seems that RARB as the core target within metabolism-associated networks plays important roles in the regulation of lung cancer cell sensitivity to acRoots.


Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 548-552
Author(s):  
Rhoda Maneckjee ◽  
Kathleen Dehen ◽  
John D. Minna

2020 ◽  
Vol 20 (5) ◽  
pp. 372-381
Author(s):  
Yoshiaki Sato ◽  
Hironori Yoshino ◽  
Eichi Tsuruga ◽  
Ikuo Kashiwakura

Background: Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play key roles in the antiviral response, but recent works show that RLR activation elicits anticancer activity as well, including apoptosis. Previously, we demonstrated that the anticancer activity of the RLR agonist Poly(I:C)-HMW/LyoVec™ [Poly(I:C)-HMW] against human lung cancer cells was enhanced by cotreatment with ionizing radiation (IR). In addition, cotreatment with Poly(I:C)-HMW and IR induced apoptosis in a Fas-independent manner, and increased Fas expression on the cell surface. Objective: The current study investigated the resultant hypothesis that Fas ligand (FasL) may enhance apoptosis in lung cancer cells cotreated with Poly(I:C)-HMW+IR. Methods: FasL was added into culture medium at 24 h following cotreatment with Poly(I:C)- HMW+IR, after upregulation of cell surface Fas expression on human lung cancer cells A549 and H1299 have already been discussed. Results: FasL enhanced the apoptosis of A549 and H1299 cells treated with Poly(I:C)-HMW+IR. Similarly, IR alone - and not Poly(I:C)-HMW - resulted in the upregulation of cell surface Fas expression followed by a high response to FasL-induced apoptosis, thus suggesting that the high sensitivity of cells treated with Poly(I:C)-HMW+IR to FasL-induced apoptosis resulted from the cellular response to IR. Finally, knockdown of Fas by siRNA confirmed that the high response of treated cells to FasL-induced apoptosis is dependent on Fas expression. Conclusion: In summary, the present study indicates that upregulated Fas expression following cotreatment with Poly(I:C)-HMW and IR is responsive to FasL-induced apoptosis, and a combination of RLR agonist, IR, and FasL could be a potential promising cancer therapy.


2020 ◽  
Vol 48 (01) ◽  
pp. 201-222
Author(s):  
Hsu-Kai Huang ◽  
Shin-Yi Lee ◽  
Shu-Fen Huang ◽  
Yu-San Lin ◽  
Shih-Chi Chao ◽  
...  

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1–300[Formula: see text][Formula: see text]M) inhibited functional activity of MCT concentration-dependently (up to [Formula: see text]%). Pretreatment with isoorientin (3–100[Formula: see text][Formula: see text]M) for 24[Formula: see text]h, MCT activity and cell migration were significantly inhibited ([Formula: see text]% and [Formula: see text]%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


Sign in / Sign up

Export Citation Format

Share Document