scholarly journals Effects of Steady Low-Intensity Exercise on High-Fat Diet Stimulated Breast Cancer Progression Via the Alteration of Macrophage Polarization

2020 ◽  
Vol 19 ◽  
pp. 153473542094967
Author(s):  
Min Kyoon Kim ◽  
Yesl Kim ◽  
SeungHwa Park ◽  
Eunju Kim ◽  
Yerin Kim ◽  
...  

Physical inactivity and high-fat diet, especially high saturated fat containing diet are established risk factors for breast cancer that are amenable to intervention. High-fat diet has been shown to induce tumor growth and metastasis by alteration of inflammation but steady exercise has anti-tumorigenic effects. However, the mechanisms underlying the effects of physical activity on high-fat diet stimulated breast cancer initiation and progression are currently unclear. In this study, we examined how the intensity of physical activity influences high fat diet-stimulated breast cancer latency and progression outcomes, and the possible mechanisms behind these effects. Five-week-old female Balb/c mice were fed either a control diet or a high-fat diet for 8 weeks, and then 4T1 mouse mammary tumor cells were inoculated into the mammary fat pads. Exercise training occurred before tumor cell injection, and tumor latency and tumor volume were measured. Mice with a high-fat diet and low-intensity exercise (HFLE) had a longer tumor latency period, slower tumor growth, and smaller tumor volume in the final tumor assessment compared with the control, high-fat diet control (HFDC), and high-fat diet with moderate-intensity exercise (HFME) groups. Steady low- and moderate-intensity exercise had no effect on cell proliferation but induced apoptosis by activating caspase-3 through the alteration of Bcl-2, Bcl-xL, and Bax expression. Furthermore, steady exercise reduced M2 macrophage polarization in breast tumor tissue, which has been linked to tumor growth. The myokine, myostatin, reduced M2 macrophage polarization through the inhibition of the JAK-STAT signaling pathway. These results suggest that steady low-intensity exercise could delay breast cancer initiation and growth and reduce tumor volume through the induction of tumor cell apoptosis and the suppression of M2 macrophage polarization.

2016 ◽  
Vol 36 (4) ◽  
pp. 369-379 ◽  
Author(s):  
Jung-Woo Kang ◽  
Jun-Kyu Shin ◽  
Eun-Ji Koh ◽  
Hyojeong Ryu ◽  
Hyoung Ja Kim ◽  
...  

2016 ◽  
Vol 60 (11) ◽  
pp. 2481-2492 ◽  
Author(s):  
Mi-Young Song ◽  
Jie Wang ◽  
Youngyi Lee ◽  
Juhyung Lee ◽  
Keun-Sang Kwon ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yinhe Cai ◽  
Junmao Wen ◽  
Siwen Ma ◽  
Zhexing Mai ◽  
Qunzhang Zhan ◽  
...  

Macrophage polarization plays a vital impact in triggering atherosclerosis (AS) progression and regression. Huang-Lian-Jie-Du Decoction (HLJDD), a famous traditional Chinese decoction, displays notable anti-inflammatory and lipid-lowering effects in different animal models. However, its effects and mechanisms on AS have not been clearly defined. We determined whether HLJDD attenuated atherosclerosis and plaques vulnerability by regulating macrophage polarization in ApoE−/− mice induced by high-fat diet (HFD). Furthermore, we investigated the effects of HLJDD on macrophage polarization in oxidized low-density lipoprotein (ox-LDL) induced RAW264.7 cells. For in vivo assay, compared with the model group, HLJDD ameliorated lipid metabolism, with significantly decreased levels of serum triglyceride, total cholesterol (CHOL), and lipid density lipoprotein. HLJDD suppressed serum tumor necrosis factor α (TNF-α) and IL-1β levels with increased serum IL-10 level, and inhibited mRNA level of NLRP3 inflammasome in carotid tissues. HLJDD enhanced carotid lesion stability by decreasing macrophage infiltration together with increased expression of collagen fibers and α-SMA. Moreover, HLJDD inhibited M1 macrophage polarization, which decreased the expression and mRNA levels of M1 markers [inducible nitric oxide synthase (iNOS) and CD86]. HLJDD enhanced alternatively activated macrophage (M2) activation, which increased the expression and mRNA levels of M2 markers (Arg-1 and CD163). For in vitro assay, HLJDD inhibited foam cell formation in RAW264.7 macrophages disturbed by ox-LDL. Besides, groups with ox-LDL plus HLJDD drug had a lower expression of CD86 and mRNA levels of iNOS, CD86, and IL-1β, but higher expression of CD163 and mRNA levels of Arg-1, CD163, and IL-10 than ox-LDL group. Collectively, our results revealed that HLJDD alleviated atherosclerosis and promoted plaque stability by suppressing M1 polarization and enhancing M2 polarization.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2021-2021
Author(s):  
Gaia Griguolo ◽  
Anna Tosi ◽  
Valentina Guarneri ◽  
Maria Vittoria Dieci ◽  
Susan Fineberg ◽  
...  

2021 Background: Despite potential clinical implications, the complexity of immune microenvironment in breast cancer (BC) brain metastases (BM) is still poorly understood. Multiplex immunofluorescence (mIF) allows simultaneous visualization of several IF labeled proteins while maintaining spatial information. This novel technique can be used to comprehensively describe BCBM immune microenvironment, potentially providing useful information to guide novel therapeutic approaches. Methods: Clinical data and archival BM samples from 60 BC patients undergoing neurosurgery (2003-2018) at three institutions were collected. BCBMs were characterized using a custom mIF panel, including immune checkpoint and co-inhibitory molecules (CD3, PD1, PD-L1, TIM3, LAG3, CD163) and localization (keratin for tumor recognition) markers. Mean marker density was determined by digital image analysis (positive cells/mm2) and classified in tumor and stroma areas. Associations between immune marker densities, BC subtype and overall survival from BM diagnosis (OS) were studied. Results: Sixty BCBM samples were analyzed; 32% HR+/HER2-, 38% HER2+, 30% HR-/HER2-. At a median follow-up of 43 months, the only clinical variable associated with OS was BC subtype (shortest for HR-/HER2- and longest for HER2+, p=0.02). In the total sample area and tumor area, no significant difference in marker density was observed according to BC subtype. In the stroma area, a significant difference in TIM3+ cell density was observed according to BC subtype (highest density in HR+/HER2- and lowest density in HER2+ tumors, Kruskal-Wallis p=0.017). Higher CD163 density (a marker of M2 macrophage polarization), both in the tumor and in the stroma area, was significantly associated with worse OS, even after correction by BC subtype. In the subgroup of patients with HR+/HER2- BCBM, high TIM3+ cell density in the stroma area was significantly associated with longer OS (median OS 54.1 versus 23 months respectively for TIM3+ density above and below median value; p=0.01). Conclusions: In BCBM, stromal TIM3+ immune infiltrate differs according to BC subtype. M2 macrophage polarization is consistently associated with worse OS across all BC subtypes and might represent a potential therapeutic target for these patients.[Table: see text]


Sign in / Sign up

Export Citation Format

Share Document