scholarly journals Plasma Fibroblast Growth Factor 21 Is Associated With Severity of Nonalcoholic Steatohepatitis in Patients With Obesity and Type 2 Diabetes

2019 ◽  
Vol 104 (8) ◽  
pp. 3327-3336 ◽  
Author(s):  
Diana Barb ◽  
Fernando Bril ◽  
Srilaxmi Kalavalapalli ◽  
Kenneth Cusi

Abstract Context The relationship between plasma fibroblast growth factor 21 (FGF21), insulin resistance, and steatohepatitis has not been systematically assessed. Objective To determine if higher plasma FGF21 is associated with worse steatohepatitis on liver biopsy in patients with nonalcoholic fatty liver disease (NAFLD). Design and Setting Cross-sectional study in a university hospital. Patients Interventions and Main Outcome Measures Patients with a body mass index >25 (n = 187) underwent: (i) euglycemic hyperinsulinemic clamp to assess tissue-specific insulin resistance (IR); (ii) liver magnetic resonance spectroscopy for intrahepatic triglyceride quantification, (iii) liver biopsy (if NAFLD present; n = 146); and (iv) fasting plasma FGF21 levels. Methods and Results Patients were divided into three groups: (i) No NAFLD (n = 41); (ii) No nonalcoholic steatohepatitis (NASH) (patients with isolated steatosis or borderline NASH; n = 52); and (iii) NASH (patients with definite NASH; n = 94). Groups were well-matched for age/sex, prevalence of type 2 diabetes mellitus, and hemoglobin A1c. During euglycemic hyperinsulinemic insulin clamp, insulin sensitivity in skeletal muscle and adipose tissue worsened from No NAFLD to NASH (both P < 0.001). Plasma FGF21 levels correlated inversely with insulin sensitivity in adipose tissue (r = −0.17, P = 0.006) and skeletal muscle (r = −0.23, P = 0.007), but not with liver insulin sensitivity. Plasma FGF21 was higher in patients with NASH (453 ± 262 pg/mL) when compared with the No NASH (341 ± 198 pg/mL, P = 0.03) or No NAFLD (325 ± 289 pg/mL, P = 0.02) groups. Plasma FGF21 increased with the severity of necroinflammation (P = 0.02), and most significantly with worse fibrosis (P < 0.001), but not with worsening steatosis (P = 0.60). Conclusions Plasma FGF21 correlates with severity of steatohepatitis, in particular of fibrosis, in patients with NASH. Measurement of FGF21 may help identify patients at the highest risk of disease progression.

2016 ◽  
Vol 242 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Qinyue Guo ◽  
Lin Xu ◽  
Jiali Liu ◽  
Huixia Li ◽  
Hongzhi Sun ◽  
...  

Fibroblast growth factor 21 (FGF21) has recently emerged as a novel endocrine hormone involved in the regulation of glucose and lipid metabolism. However, the exact mechanisms whereby FGF21 mediates insulin sensitivity remain not fully understood. In the present study, FGF21was administrated in high-fat diet-induced obese mice and tunicamycin-induced 3T3-L1 adipocytes, and metabolic parameters, endoplasmic reticulum (ER) stress indicators, and insulin signaling molecular were assessed by Western blotting. The administration of FGF21 in obese mice reduced body weight, blood glucose and serum insulin, and increased insulin sensitivity, resulting in alleviation of insulin resistance. Meanwhile, FGF21 treatment reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress in adipose tissue of obese mice. Additionally, suppression of ER stress via the ER stress inhibitor tauroursodeoxycholic acid increased adiponectin expression and improved insulin resistance in obese mice and in tunicamycin-induced adipocytes. In conclusion, our results showed that the administration of FGF21 reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress under the condition of insulin resistance, demonstrating the causative role of ER stress in downregulating adiponectin levels.


2018 ◽  
Vol 127 (08) ◽  
pp. 550-556 ◽  
Author(s):  
Melina Amor ◽  
Bianca K. Itariu ◽  
Veronica Moreno-Viedma ◽  
Magdalena Keindl ◽  
Alexander Jürets ◽  
...  

AbstractObesity and type 2 diabetes mellitus have reached an epidemic level, thus novel treatment concepts need to be identified. Myostatin, a myokine known for restraining skeletal muscle growth, has been associated with the development of insulin resistance and type 2 diabetes mellitus. Yet, little is known about the regulation of myostatin in human obesity and insulin resistance. We aimed to investigate the regulation of myostatin in obesity and uncover potential associations between myostatin, metabolic markers and insulin resistance/sensitivity indices. Circulating active myostatin concentration was measured in the serum of twenty-eight severely obese non-diabetic patients compared to a sex and age matched lean and overweight control group (n=22). Insulin resistance/sensitivity was assessed in the obese group. Skeletal muscle and adipose tissue specimens from the obese group were collected during elective bariatric surgery. Adipose tissue samples from lean and overweight subjects were collected during elective abdominal surgery. Myostatin concentration was increased in obese compared to lean individuals, while myostatin adipose tissue expression did not differ. Muscle myostatin gene expression strongly correlated with expression of metabolic genes such as IRS1, PGC1α, SREBF1. Circulating myostatin concentration correlated positively with insulin resistance indices and negatively with insulin sensitivity indices. The best correlation was obtained for the oral glucose insulin sensitivity index. Our results point to an interesting correlation between myostatin and insulin resistance/sensitivity in humans, and emphasize its need for further evaluation as a pharmacological target in the prevention and treatment of obesity-associated metabolic complications.


Author(s):  
Li Zhang ◽  
Qingde Zhou ◽  
Min Chen ◽  
Xuanxin Yang ◽  
Chao Lu ◽  
...  

Acidic fibroblast growth factor (aFGF) is a promising regulator of glucose with no adverse effects of hypoglycemia. Previous researches revealed that aFGF mediated adipose tissue remodeling and insulin sensitivity. These findings supported rh-aFGF135 would be used as a new candidate for the treatment of insulin resistance and type 2 diabetes. In this study, we aimed to investigate the hypoglycemic efficacy of recombinant human acidic fibroblast growth factor 135 (rh-aFGF135) with low mitogenic in type 2 diabetic ZDF rats. ZDF rats were treated with rh-aFGF135 at a daily dosage of 0.25 and 0.50 mg/kg by tail intravenous injection for 5 weeks. The blood glucose levels, oral glucose tolerance test, insulin tolerance test, HOMA-IR for insulin resistance, serum biochemical parameters, and the histopathological changes of adipose tissue, liver and other organs were detected at designed time point. The glucose uptake activity and anti-insulin resistance effect of rh-aFGF135 were also detected in HepG2 cells. Results revealed that rh-aFGF135 exhibited a better hypoglycemic effect compared with vehicle group and without the adverse effect of hypoglycemia in ZDF rats. Compared with vehicle group, rh-aFGF135 significantly improved the situation of hyperglycemia and insulin resistance. Rh-aFGF135 decreased ALT, AST, GSP, and FFA levels noticeably compared with vehicle control group (P < 0.01 or P < 0.001). After 5 weeks of treatment, high-dosage rh-aFGF135 could remodel adipose tissue, and has no influence on other organs. H&E staining showed that rh-aFGF135 reduced the size of adipocytes. In addition, rh-aFGF135 may improve insulin resistance partly by increasing the protein expression of p-IRS-1 (human Ser 307). As a hypoglycemic drug for long-term treatment, rh-aFGF135 would be a potentially safe candidate for the therapy of type 2 diabetes.


2020 ◽  
Vol 8 (1) ◽  
pp. e001578
Author(s):  
Yutaro Morita ◽  
Takafumi Senokuchi ◽  
Sarie Yamada ◽  
Toshiaki Wada ◽  
Tatsuya Furusho ◽  
...  

IntroductionObesity-related insulin resistance is a widely accepted pathophysiological feature in type 2 diabetes. Systemic metabolism and immunity are closely related, and obesity represents impaired immune function that predisposes individuals to systemic chronic inflammation. Increased macrophage infiltration and activation in peripheral insulin target tissues in obese subjects are strongly related to insulin resistance. Using a macrophage-specific proliferation inhibition mouse model (mac-p27Tg), we previously reported that suppressed plaque inflammation reduced atherosclerosis and improved plaque stabilization. However, the direct evidence that proliferating macrophages are responsible for inducing insulin resistance was not provided.Research design and methodsThe mac-p27Tg mice were fed a high-fat diet, and glucose metabolism, histological changes, macrophage polarization, and tissue functions were investigated to reveal the significance of tissue macrophage proliferation in insulin resistance and obesity.ResultsThe mac-p27Tg mice showed improved glucose tolerance and insulin sensitivity, along with a decrease in the number and ratio of inflammatory macrophages. Obesity-induced inflammation and oxidative stress was attenuated in white adipose tissue, liver, and gastrocnemius. Histological changes related to insulin resistance, such as liver steatosis/fibrosis, adipocyte enlargement, and skeletal muscle fiber transformation to fast type, were ameliorated in mac-p27Tg mice. Serum tumor necrosis factor alpha and free fatty acid were decreased, which might partially impact improved insulin sensitivity and histological changes.ConclusionsMacrophage proliferation in adipose tissue, liver, and skeletal muscle was involved in promoting the development of systemic insulin resistance. Controlling the number of tissue macrophages by inhibiting macrophage proliferation could be a therapeutic target for insulin resistance and type 2 diabetes.


2005 ◽  
Vol 34 (2) ◽  
pp. 299-315 ◽  
Author(s):  
Young Ho Suh ◽  
Younyoung Kim ◽  
Jeong Hyun Bang ◽  
Kyoung Suk Choi ◽  
June Woo Lee ◽  
...  

Insulin resistance occurs early in the disease process, preceding the development of type 2 diabetes. Therefore, the identification of molecules that contribute to insulin resistance and leading up to type 2 diabetes is important to elucidate the molecular pathogenesis of the disease. To this end, we characterized gene expression profiles from insulin-sensitive tissues, including adipose tissue, skeletal muscle, and liver tissue of Zucker diabetic fatty (ZDF) rats, a well characterized type 2 diabetes animal model. Gene expression profiles from ZDF rats at 6 weeks (pre-diabetes), 12 weeks (diabetes), and 20 weeks (late-stage diabetes) were compared with age- and sex-matched Zucker lean control (ZLC) rats using 5000 cDNA chips. Differentially regulated genes demonstrating > 1.3-fold change at age were identified and categorized through hierarchical clustering analysis. Our results showed that while expression of lipolytic genes was elevated in adipose tissue of diabetic ZDF rats at 12 weeks of age, expression of lipogenic genes was decreased in liver but increased in skeletal muscle of 12 week old diabetic ZDF rats. These results suggest that impairment of hepatic lipogenesis accompanied with the reduced lipogenesis of adipose tissue may contribute to development of diabetes in ZDF rats by increasing lipogenesis in skeletal muscle. Moreover, expression of antioxidant defense genes was decreased in the liver of 12-week old diabetic ZDF rats as well as in the adipose tissue of ZDF rats both at 6 and 12 weeks of age. Cytochrome P450 (CYP) genes were also significantly reduced in 12 week old diabetic liver of ZDF rats. Genes involved in glucose utilization were downregulated in skeletal muscle of diabetic ZDF rats, and the hepatic gluconeogenic gene was upregulated in diabetic ZDF rats. Genes commonly expressed in all three tissue types were also observed. These profilings might provide better fundamental understanding of insulin resistance and development of type 2 diabetes.


2017 ◽  
Vol 176 (2) ◽  
pp. R67-R78 ◽  
Author(s):  
Charlotte Brøns ◽  
Louise Groth Grunnet

Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver.


2020 ◽  
Vol 4 (s1) ◽  
pp. 9-9
Author(s):  
Darcy Kahn ◽  
Simona Zarini ◽  
Emily Macias ◽  
Amanda Garfield ◽  
Kathleen Harrison ◽  
...  

OBJECTIVES/GOALS: Intermuscular adipose tissue (IMAT) has been associated with insulin resistance and type 2 diabetes, yet mechanistic studies addressing the functional role of IMAT are lacking. The aim of this work was to identify novel mechanisms by which IMAT may directly impact skeletal muscle metabolism. METHODS/STUDY POPULATION: We quantified the secretome of IMAT, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) to determine if there are differences between depots in the secretion of cytokines, eicosanoids, FFAs and proteins that influence metabolic function. SAT and VAT biopsies from patients undergoing laparoscopic bariatric surgery and IMAT extracted from vastus lateralis biopsies of individuals with Obesity were cultured for 48 hours in DMEM, and the conditioned media was analyzed using nanoflow HPLC-MS, multiplex ELISAs and LC/MS/MS for proteins, cytokines and eicosanoids/FFA, respectively. RESULTS/ANTICIPATED RESULTS: IMAT secretion of various extracellular matrix proteins (fibrinogen-β, collagenV1a3, fibronectin) was significantly different than VAT and SAT. Pro-inflammatory cytokine secretion of IFNg, TNFa, IL-8 and IL-13 from IMAT was higher than VAT and significantly higher than SAT (p < 0.05). IMAT secretes significantly more pro-inflammatory eicosanoids TXB2 and PGE2 than VAT (p = 0.02, 0.05) and SAT (p = 0.01, 0.04). IMAT and VAT have significantly greater basal lipolysis assessed by FFA release rates compared to SAT (p = 0.01, 0.04). DISCUSSION/SIGNIFICANCE OF IMPACT: These data begin to characterize the disparate secretory properties of SAT, VAT and IMAT and suggest a metabolically adverse secretome of IMAT, that due to its proximity to skeletal muscle may play an important functional role in the pathogenesis of insulin resistance and type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document